ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02083
  4. Cited By
Applying Machine Learning to Study Fluid Mechanics

Applying Machine Learning to Study Fluid Mechanics

5 October 2021
Steven L. Brunton
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Applying Machine Learning to Study Fluid Mechanics"

7 / 7 papers shown
Title
Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics
Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics
Rahul Sharma
Y.B. Guo
M. Raissi
W. Guo
PINN
AI4CE
26
5
0
23 Jul 2023
Rotationally Equivariant Super-Resolution of Velocity Fields in
  Two-Dimensional Fluids Using Convolutional Neural Networks
Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks
Y. Yasuda
R. Onishi
8
4
0
22 Feb 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,254
0
18 Oct 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
175
83
0
12 Sep 2019
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1