ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02376
  4. Cited By
Foundations of Symbolic Languages for Model Interpretability

Foundations of Symbolic Languages for Model Interpretability

5 October 2021
Marcelo Arenas
Daniel Baez
Pablo Barceló
Jorge A. Pérez
Bernardo Subercaseaux
    ReLM
    LRM
ArXivPDFHTML

Papers citing "Foundations of Symbolic Languages for Model Interpretability"

21 / 21 papers shown
Title
Seeing Through Risk: A Symbolic Approximation of Prospect Theory
Seeing Through Risk: A Symbolic Approximation of Prospect Theory
Ali Arslan Yousaf
Umair Rehman
Muhammad Umair Danish
30
0
0
20 Apr 2025
On the Complexity of Global Necessary Reasons to Explain Classification
On the Complexity of Global Necessary Reasons to Explain Classification
M. Calautti
Enrico Malizia
Cristian Molinaro
FAtt
63
0
0
12 Jan 2025
A Theoretical Survey on Foundation Models
A Theoretical Survey on Foundation Models
Shi Fu
Yuzhu Chen
Yingjie Wang
Dacheng Tao
26
0
0
15 Oct 2024
Query languages for neural networks
Query languages for neural networks
Martin Grohe
Christoph Standke
Juno Steegmans
Jan Van den Bussche
NAI
19
1
0
19 Aug 2024
Hard to Explain: On the Computational Hardness of In-Distribution Model
  Interpretation
Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation
Guy Amir
Shahaf Bassan
Guy Katz
42
2
0
07 Aug 2024
Local vs. Global Interpretability: A Computational Complexity
  Perspective
Local vs. Global Interpretability: A Computational Complexity Perspective
Shahaf Bassan
Guy Amir
Guy Katz
35
6
0
05 Jun 2024
Even-if Explanations: Formal Foundations, Priorities and Complexity
Even-if Explanations: Formal Foundations, Priorities and Complexity
Gianvincenzo Alfano
S. Greco
Domenico Mandaglio
Francesco Parisi
Reza Shahbazian
I. Trubitsyna
26
2
0
17 Jan 2024
A Uniform Language to Explain Decision Trees
A Uniform Language to Explain Decision Trees
Marcelo Arenas
Pablo Barceló
Diego Bustamante
Jose Caraball
Bernardo Subercaseaux
11
0
0
18 Oct 2023
On Formal Feature Attribution and Its Approximation
On Formal Feature Attribution and Its Approximation
Jinqiang Yu
Alexey Ignatiev
Peter James Stuckey
20
7
0
07 Jul 2023
On Logic-Based Explainability with Partially Specified Inputs
On Logic-Based Explainability with Partially Specified Inputs
Ramón Béjar
António Morgado
Jordi Planes
João Marques-Silva
32
0
0
27 Jun 2023
Disproving XAI Myths with Formal Methods -- Initial Results
Disproving XAI Myths with Formal Methods -- Initial Results
João Marques-Silva
35
8
0
13 May 2023
Neurosymbolic AI and its Taxonomy: a survey
Neurosymbolic AI and its Taxonomy: a survey
Wandemberg Gibaut
Leonardo Pereira
Fabio Grassiotto
Alexandre Osorio
Eder Gadioli
Amparo Munoz
Sildolfo Gomes
Claudio dos Santos
NAI
AI4CE
27
5
0
12 May 2023
COMET: Neural Cost Model Explanation Framework
COMET: Neural Cost Model Explanation Framework
Isha Chaudhary
Alex Renda
Charith Mendis
Gagandeep Singh
19
2
0
14 Feb 2023
Feature Necessity & Relevancy in ML Classifier Explanations
Feature Necessity & Relevancy in ML Classifier Explanations
Xuanxiang Huang
Martin C. Cooper
António Morgado
Jordi Planes
João Marques-Silva
FAtt
30
18
0
27 Oct 2022
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
João Marques-Silva
LRM
XAI
39
39
0
24 Oct 2022
On Computing Probabilistic Explanations for Decision Trees
On Computing Probabilistic Explanations for Decision Trees
Marcelo Arenas
Pablo Barceló
M. Romero
Bernardo Subercaseaux
FAtt
29
38
0
30 Jun 2022
Eliminating The Impossible, Whatever Remains Must Be True
Eliminating The Impossible, Whatever Remains Must Be True
Jinqiang Yu
Alexey Ignatiev
Peter James Stuckey
Nina Narodytska
João Marques-Silva
9
22
0
20 Jun 2022
On Tackling Explanation Redundancy in Decision Trees
On Tackling Explanation Redundancy in Decision Trees
Yacine Izza
Alexey Ignatiev
João Marques-Silva
FAtt
48
57
0
20 May 2022
Model Interpretability through the Lens of Computational Complexity
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
116
94
0
23 Oct 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,203
0
23 Aug 2019
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1