ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02892
  4. Cited By
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios

Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios

6 October 2021
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
ArXivPDFHTML

Papers citing "Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios"

5 / 5 papers shown
Title
Flow to Rare Events: An Application of Normalizing Flow in Temporal
  Importance Sampling for Automated Vehicle Validation
Flow to Rare Events: An Application of Normalizing Flow in Temporal Importance Sampling for Automated Vehicle Validation
Yichun Ye
He Zhang
Ye Tian
Jian-jun Sun
30
0
0
10 Jul 2024
Vectorized Scenario Description and Motion Prediction for Scenario-Based
  Testing
Vectorized Scenario Description and Motion Prediction for Scenario-Based Testing
Max Winkelmann
Constantin Vasconi
Steffen Müller
8
2
0
02 Feb 2023
Transfer Importance Sampling -- How Testing Automated Vehicles in
  Multiple Test Setups Helps With the Bias-Variance Tradeoff
Transfer Importance Sampling -- How Testing Automated Vehicles in Multiple Test Setups Helps With the Bias-Variance Tradeoff
Max Winkelmann
Constantin Vasconi
Steffen Müller
9
4
0
15 Apr 2022
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
33
46
0
24 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
1