ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02910
  4. Cited By
Equivariant Subgraph Aggregation Networks

Equivariant Subgraph Aggregation Networks

6 October 2021
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
ArXivPDFHTML

Papers citing "Equivariant Subgraph Aggregation Networks"

28 / 128 papers shown
Title
Asynchronous Neural Networks for Learning in Graphs
Asynchronous Neural Networks for Learning in Graphs
Lukas Faber
Roger Wattenhofer
GNN
14
3
0
24 May 2022
Learning Generalized Policies Without Supervision Using GNNs
Learning Generalized Policies Without Supervision Using GNNs
Simon Ståhlberg
Blai Bonet
Hector Geffner
OffRL
19
27
0
12 May 2022
GRAPHYP: A Scientific Knowledge Graph with Manifold Subnetworks of
  Communities. Detection of Scholarly Disputes in Adversarial Information
  Routes
GRAPHYP: A Scientific Knowledge Graph with Manifold Subnetworks of Communities. Detection of Scholarly Disputes in Adversarial Information Routes
Renaud Fabre
Otmane Azeroual
P. Bellot
Joachim Schöpfel
D. Egret
8
0
0
03 May 2022
Theory of Graph Neural Networks: Representation and Learning
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
31
67
0
16 Apr 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
27
66
0
04 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
38
39
0
25 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
30
138
0
25 Feb 2022
Message passing all the way up
Message passing all the way up
Petar Velickovic
109
63
0
22 Feb 2022
1-WL Expressiveness Is (Almost) All You Need
1-WL Expressiveness Is (Almost) All You Need
Markus Zopf
17
11
0
21 Feb 2022
Weisfeiler and Leman Go Infinite: Spectral and Combinatorial
  Pre-Colorings
Weisfeiler and Leman Go Infinite: Spectral and Combinatorial Pre-Colorings
Or Feldman
A. Boyarski
Shai Feldman
D. Kogan
A. Mendelson
Chaim Baskin
32
14
0
31 Jan 2022
A Theoretical Comparison of Graph Neural Network Extensions
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
Generative Coarse-Graining of Molecular Conformations
Generative Coarse-Graining of Molecular Conformations
Wujie Wang
Minkai Xu
Chen Cai
Benjamin Kurt Miller
Tess E. Smidt
Yusu Wang
Jian Tang
Rafael Gómez-Bombarelli
16
34
0
28 Jan 2022
Convergence of Invariant Graph Networks
Convergence of Invariant Graph Networks
Chen Cai
Yusu Wang
50
4
0
25 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
35
110
0
18 Dec 2021
Graph Kernel Neural Networks
Graph Kernel Neural Networks
Luca Cosmo
G. Minello
Alessandro Bicciato
M. Bronstein
Emanuele Rodolà
Luca Rossi
A. Torsello
GNN
25
20
0
14 Dec 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure
  Awareness
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
22
160
0
07 Oct 2021
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
122
78
0
01 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,103
0
27 Apr 2021
Equivariant geometric learning for digital rock physics: estimating
  formation factor and effective permeability tensors from Morse graph
Equivariant geometric learning for digital rock physics: estimating formation factor and effective permeability tensors from Morse graph
Chen Cai
Nikolaos N. Vlassis
Lucas Magee
R. Ma
Zeyu Xiong
B. Bahmani
T. Wong
Yusu Wang
WaiChing Sun
16
16
0
12 Apr 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond
  Message Passing
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
76
27
0
17 Feb 2021
The expressive power of kth-order invariant graph networks
The expressive power of kth-order invariant graph networks
Floris Geerts
126
37
0
23 Jul 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
170
170
0
09 Mar 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
913
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
Image Generation from Scene Graphs
Image Generation from Scene Graphs
Justin Johnson
Agrim Gupta
Li Fei-Fei
GNN
221
815
0
04 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,332
0
12 Feb 2018
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,087
0
02 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
236
3,234
0
24 Nov 2016
Previous
123