Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03922
Cited By
The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks
8 October 2021
James B. Simon
Madeline Dickens
Dhruva Karkada
M. DeWeese
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks"
9 / 9 papers shown
Title
Infinite Width Limits of Self Supervised Neural Networks
Maximilian Fleissner
Gautham Govind Anil
D. Ghoshdastidar
SSL
115
0
0
17 Nov 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
44
11
0
26 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
35
3
0
05 Sep 2024
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
11
37
0
14 Jul 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
164
268
0
28 Sep 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
150
232
0
04 Mar 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
131
199
0
07 Feb 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
4,424
0
23 Jan 2020
1