Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.04383
Cited By
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
8 October 2021
Keir Adams
L. Pattanaik
Connor W. Coley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"
20 / 20 papers shown
Title
Diffusion Models in
De
Novo
\textit{De Novo}
De Novo
Drug Design
Amira Alakhdar
Barnabás Póczos
Newell Washburn
MedIm
26
11
0
07 Jun 2024
Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks
Christoforos Brozos
Jan G. Rittig
Sandip Bhattacharya
Elie Akanny
Christina Kohlmann
Alexander Mitsos
20
4
0
06 Mar 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
31
2
0
07 Feb 2024
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction
Andac Demir
Francis Prael
B. Kiziltan
16
2
0
12 Dec 2023
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks
Yanqiao Zhu
Jeehyun Hwang
Keir Adams
Zhen Liu
B. Nan
...
Olaf Wiest
Olexandr Isayev
Connor W. Coley
Yizhou Sun
Wei Wang
8
2
0
29 Sep 2023
Graph Positional and Structural Encoder
Semih Cantürk
Renming Liu
Olivier Lapointe-Gagné
Vincent Létourneau
Guy Wolf
Dominique Beaini
Ladislav Rampášek
25
13
0
14 Jul 2023
ChiENN: Embracing Molecular Chirality with Graph Neural Networks
Piotr Gaiñski
Michał Koziarski
Jacek Tabor
Marek Śmieja
GNN
27
3
0
05 Jul 2023
A Systematic Survey in Geometric Deep Learning for Structure-based Drug Design
Zaixin Zhang
Jiaxian Yan
Qi Liu
Enhong Chen
Marinka Zitnik
19
1
0
20 Jun 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
51
0
28 Apr 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhiqiang Zhong
A. Barkova
Davide Mottin
14
8
0
16 Feb 2023
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
14
7
0
22 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
14
12
0
04 Nov 2022
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
19
2
0
03 Nov 2022
Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph Network
Yi Yi
Xu Wan
Kangfei Zhao
Ou-Yang Le
Pei-Ying Zhao
10
1
0
27 Oct 2022
Structure-based Drug Design with Equivariant Diffusion Models
Arne Schneuing
Yuanqi Du
Charles Harris
Arian R. Jamasb
Ilia Igashov
...
Pietro Lió
Carla P. Gomes
Max Welling
Michael M. Bronstein
B. Correia
DiffM
24
189
0
24 Oct 2022
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
41
20
0
12 Sep 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
29
87
0
17 Jun 2022
3D Graph Contrastive Learning for Molecular Property Prediction
Kisung Moon
Sunyoung Kwon
11
17
0
31 May 2022
MolNet: A Chemically Intuitive Graph Neural Network for Prediction of Molecular Properties
Yeji Kim
Yoonho Jeong
Jihoo Kim
E. Lee
W. Kim
I. Choi
GNN
11
7
0
01 Feb 2022
Auto-Encoding Molecular Conformations
R. Winter
Frank Noé
Djork-Arné Clevert
AI4CE
34
12
0
05 Jan 2021
1