ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04629
  4. Cited By
The Neural Testbed: Evaluating Joint Predictions

The Neural Testbed: Evaluating Joint Predictions

9 October 2021
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
    UQCV
ArXivPDFHTML

Papers citing "The Neural Testbed: Evaluating Joint Predictions"

19 / 19 papers shown
Title
Architectural and Inferential Inductive Biases For Exchangeable Sequence Modeling
Daksh Mittal
Ang Li
Tzu-Ching Yen
Daniel Guetta
Hongseok Namkoong
45
0
0
03 Mar 2025
The Need for a Big World Simulator: A Scientific Challenge for Continual
  Learning
The Need for a Big World Simulator: A Scientific Challenge for Continual Learning
Saurabh Kumar
Hong Jun Jeon
Alex Lewandowski
Benjamin Van Roy
29
0
0
06 Aug 2024
Making Better Use of Unlabelled Data in Bayesian Active Learning
Making Better Use of Unlabelled Data in Bayesian Active Learning
Freddie Bickford-Smith
Adam Foster
Tom Rainforth
36
3
0
26 Apr 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Efficient Exploration for LLMs
Efficient Exploration for LLMs
Vikranth Dwaracherla
S. Asghari
Botao Hao
Benjamin Van Roy
LLMAG
15
20
0
01 Feb 2024
Reducing LLM Hallucinations using Epistemic Neural Networks
Reducing LLM Hallucinations using Epistemic Neural Networks
Shreyas Verma
Kien Tran
Yusuf Ali
Guangyu Min
38
7
0
25 Dec 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
63
1
0
10 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Scalable Neural Contextual Bandit for Recommender Systems
Scalable Neural Contextual Bandit for Recommender Systems
Zheqing Zhu
Benjamin Van Roy
OffRL
24
9
0
26 Jun 2023
Efficient Exploration via Epistemic-Risk-Seeking Policy Optimization
Efficient Exploration via Epistemic-Risk-Seeking Policy Optimization
Brendan O'Donoghue
OffRL
27
6
0
18 Feb 2023
Approximate Thompson Sampling via Epistemic Neural Networks
Approximate Thompson Sampling via Epistemic Neural Networks
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiuyuan Lu
Benjamin Van Roy
BDL
29
20
0
18 Feb 2023
Leveraging Demonstrations to Improve Online Learning: Quality Matters
Leveraging Demonstrations to Improve Online Learning: Quality Matters
Botao Hao
Rahul Jain
Tor Lattimore
Benjamin Van Roy
Zheng Wen
21
8
0
07 Feb 2023
Fine-Tuning Language Models via Epistemic Neural Networks
Fine-Tuning Language Models via Epistemic Neural Networks
Ian Osband
S. Asghari
Benjamin Van Roy
Nat McAleese
John Aslanides
G. Irving
UQLM
31
16
0
03 Nov 2022
An Analysis of Ensemble Sampling
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
26
22
0
02 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Deep Exploration for Recommendation Systems
Deep Exploration for Recommendation Systems
Zheqing Zhu
Benjamin Van Roy
32
11
0
26 Sep 2021
Epistemic Neural Networks
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
30
97
0
19 Jul 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1