ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05428
  4. Cited By
Learning Temporally Causal Latent Processes from General Temporal Data

Learning Temporally Causal Latent Processes from General Temporal Data

11 October 2021
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
    BDL
    CML
ArXivPDFHTML

Papers citing "Learning Temporally Causal Latent Processes from General Temporal Data"

50 / 63 papers shown
Title
Modeling Unseen Environments with Language-guided Composable Causal Components in Reinforcement Learning
Modeling Unseen Environments with Language-guided Composable Causal Components in Reinforcement Learning
Xinyue Wang
Biwei Huang
OffRL
CML
29
0
0
13 May 2025
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Ruichu Cai
Kaitao Zheng
Junxian Huang
Zijian Li
Zhengming Chen
Boyan Xu
Zhifeng Hao
AI4TS
CML
31
0
0
12 May 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
55
0
0
27 Feb 2025
Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting
Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting
Ruichu Cai
Haiqin Huang
Zhifang Jiang
Zijian Li
Changze Zhou
Yuequn Liu
Yuming Liu
Z. Hao
AI4TS
CML
58
1
0
18 Feb 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Biwei Huang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Kun Zhang
CML
50
0
0
21 Jan 2025
Information Subtraction: Learning Representations for Conditional Entropy
Keng Hou Leong
Yuxuan Xiu
Wai Kin
Chan
41
0
0
02 Jan 2025
Self-supervised contrastive learning performs non-linear system
  identification
Self-supervised contrastive learning performs non-linear system identification
Rodrigo González Laiz
Tobias Schmidt
Steffen Schneider
SSL
37
0
0
18 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent
  Decoding
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
34
3
0
09 Oct 2024
CAnDOIT: Causal Discovery with Observational and Interventional Data
  from Time-Series
CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
Luca Castri
Sariah Mghames
Marc Hanheide
Nicola Bellotto
CML
26
1
0
03 Oct 2024
Causal Temporal Representation Learning with Nonstationary Sparse
  Transition
Causal Temporal Representation Learning with Nonstationary Sparse Transition
Xiangchen Song
Zijian Li
Guangyi Chen
Yujia Zheng
Yewen Fan
Xinshuai Dong
Kun Zhang
CML
33
2
0
05 Sep 2024
Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations
Yupei Yang
Biwei Huang
Fan Feng
Xinyue Wang
Shikui Tu
Lei Xu
CML
OOD
TTA
38
1
0
30 Jul 2024
Disentangled Representations for Causal Cognition
Disentangled Representations for Causal Cognition
Filippo Torresan
Manuel Baltieri
CML
35
1
0
30 Jun 2024
Identifying latent state transition in non-linear dynamical systems
Identifying latent state transition in non-linear dynamical systems
Çağlar Hızlı
Çağatay Yıldız
Matthias Bethge
ST John
Pekka Marttinen
OOD
25
0
0
05 Jun 2024
From Orthogonality to Dependency: Learning Disentangled Representation
  for Multi-Modal Time-Series Sensing Signals
From Orthogonality to Dependency: Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals
Ruichu Cai
Zhifan Jiang
Zijian Li
Weilin Chen
Xuexin Chen
Zhifeng Hao
Yifan Shen
Guan-Hong Chen
Kun Zhang
40
1
0
25 May 2024
On the Identification of Temporally Causal Representation with
  Instantaneous Dependence
On the Identification of Temporally Causal Representation with Instantaneous Dependence
Zijian Li
Yifan Shen
Kaitao Zheng
Ruichu Cai
Xiangchen Song
Mingming Gong
Zhengmao Zhu
Guan-Hong Chen
Kun Zhang
CML
29
5
0
24 May 2024
Identifiable Latent Neural Causal Models
Identifiable Latent Neural Causal Models
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
CML
OOD
40
7
0
23 Mar 2024
Towards the Reusability and Compositionality of Causal Representations
Towards the Reusability and Compositionality of Causal Representations
Davide Talon
Phillip Lippe
Stuart James
Alessio Del Bue
Sara Magliacane
BDL
CML
38
4
0
14 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
40
13
0
13 Mar 2024
Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action
  Recognition
Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action Recognition
Yuke Li
Guangyi Chen
Ben Abramowitz
Stefano Anzellotti
Donglai Wei
TTA
40
1
0
20 Feb 2024
Nonstationary Time Series Forecasting via Unknown Distribution Adaptation
Nonstationary Time Series Forecasting via Unknown Distribution Adaptation
Zijian Li
Ruichu Cai
Zhenhui Yang
Haiqin Huang
Guan-Hong Chen
Yifan Shen
Zhengming Chen
Xiangchen Song
Kun Zhang
OOD
AI4TS
29
2
0
20 Feb 2024
Causal Representation Learning from Multiple Distributions: A General
  Setting
Causal Representation Learning from Multiple Distributions: A General Setting
Kun Zhang
Shaoan Xie
Ignavier Ng
Yujia Zheng
CML
OOD
29
18
0
07 Feb 2024
CaRiNG: Learning Temporal Causal Representation under Non-Invertible
  Generation Process
CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process
Guan-Hong Chen
Yifan Shen
Zhenhao Chen
Xiangchen Song
Yuewen Sun
Weiran Yao
Xiao Liu
Kun Zhang
CML
29
7
0
25 Jan 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
49
3
0
06 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems
  with Independent Component Analysis
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
37
8
0
29 Nov 2023
Doubly Robust Structure Identification from Temporal Data
Doubly Robust Structure Identification from Temporal Data
Emmanouil Angelis
Francesco Quinzan
Ashkan Soleymani
P. Jaillet
Stefan Bauer
CML
OOD
34
2
0
10 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
23
9
0
08 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
15
5
0
05 Nov 2023
Generalizing Nonlinear ICA Beyond Structural Sparsity
Generalizing Nonlinear ICA Beyond Structural Sparsity
Yujia Zheng
Kun Zhang
CML
23
16
0
01 Nov 2023
Temporally Disentangled Representation Learning under Unknown
  Nonstationarity
Temporally Disentangled Representation Learning under Unknown Nonstationarity
Xiangchen Song
Weiran Yao
Yewen Fan
Xinshuai Dong
Guan-Hong Chen
Juan Carlos Niebles
Eric P. Xing
Kun Zhang
CML
OOD
36
12
0
28 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
25
13
0
24 Oct 2023
General Identifiability and Achievability for Causal Representation
  Learning
General Identifiability and Achievability for Causal Representation Learning
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
37
16
0
24 Oct 2023
Discovering Mixtures of Structural Causal Models from Time Series Data
Discovering Mixtures of Structural Causal Models from Time Series Data
Sumanth Varambally
Yi-An Ma
Rose Yu
20
4
0
10 Oct 2023
Subspace Identification for Multi-Source Domain Adaptation
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Z. Hao
Kun Zhang
34
33
0
07 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional
  Invariances
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
21
10
0
04 Oct 2023
BayOTIDE: Bayesian Online Multivariate Time series Imputation with
  functional decomposition
BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition
Shikai Fang
Qingsong Wen
Yingtao Luo
Shandian Zhe
Liang Sun
AI4TS
14
5
0
28 Aug 2023
BISCUIT: Causal Representation Learning from Binary Interactions
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Lowe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
44
28
0
16 Jun 2023
Identification of Nonlinear Latent Hierarchical Models
Identification of Nonlinear Latent Hierarchical Models
Lingjing Kong
Biwei Huang
Feng Xie
Eric P. Xing
Yuejie Chi
Kun Zhang
CML
30
19
0
13 Jun 2023
Learning World Models with Identifiable Factorization
Learning World Models with Identifiable Factorization
Yu-Ren Liu
Biwei Huang
Zhengmao Zhu
Hong Tian
Mingming Gong
Yang Yu
Kun Zhang
CML
OffRL
31
12
0
11 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Causal Component Analysis
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
32
36
0
26 May 2023
On the Identifiability of Switching Dynamical Systems
On the Identifiability of Switching Dynamical Systems
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
32
4
0
25 May 2023
Latent Processes Identification From Multi-View Time Series
Latent Processes Identification From Multi-View Time Series
Zenan Huang
Haobo Wang
J. Zhao
Nenggan Zheng
AI4TS
24
4
0
14 May 2023
Leveraging sparse and shared feature activations for disentangled
  representation learning
Leveraging sparse and shared feature activations for disentangled representation learning
Marco Fumero
F. Wenzel
L. Zancato
Alessandro Achille
Emanuele Rodolà
Stefano Soatto
Bernhard Schölkopf
Francesco Locatello
OOD
DRL
39
22
0
17 Apr 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Causal Discovery from Temporal Data: An Overview and New Perspectives
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
16
17
0
17 Mar 2023
Entity Aware Modelling: A Survey
Entity Aware Modelling: A Survey
Rahul Ghosh
Haoyu Yang
A. Khandelwal
Erhu He
Arvind Renganathan
Somya Sharma
X. Jia
Vipin Kumar
33
7
0
16 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
53
11
0
29 Jan 2023
Score-based Causal Representation Learning with Interventions
Score-based Causal Representation Learning with Interventions
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
Abhishek Kumar
A. Tajer
CML
33
38
0
19 Jan 2023
Synergies between Disentanglement and Sparsity: Generalization and
  Identifiability in Multi-Task Learning
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
18
32
0
26 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
31
11
0
07 Nov 2022
12
Next