ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06021
  4. Cited By
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
v1v2v3 (latest)

Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling

International Conference on Learning Representations (ICLR), 2021
12 October 2021
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
    BDLTPMAI4CE
ArXiv (abs)PDFHTML

Papers citing "Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling"

3 / 3 papers shown
Title
Structured Neural Networks for Density Estimation and Causal Inference
Structured Neural Networks for Density Estimation and Causal InferenceNeural Information Processing Systems (NeurIPS), 2023
Asic Q. Chen
Ruian Shi
Xiang Gao
Ricardo Baptista
Rahul G. Krishnan
CMLTPM
159
8
0
03 Nov 2023
Structured Stochastic Gradient MCMC
Structured Stochastic Gradient MCMCInternational Conference on Machine Learning (ICML), 2021
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
211
13
0
19 Jul 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative ModelingNeural Information Processing Systems (NeurIPS), 2021
Naoya Takeishi
Alexandros Kalousis
DRLAI4CE
257
69
0
25 Feb 2021
1