ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06196
  4. Cited By
GRAPE for Fast and Scalable Graph Processing and random walk-based
  Embedding

GRAPE for Fast and Scalable Graph Processing and random walk-based Embedding

12 October 2021
L. Cappelletti
Tommaso Fontana
E. Casiraghi
V. Ravanmehr
Tiffany J. Callahan
Carlos Cano
marcin p. joachimiak
Christopher J. Mungall
Peter N. Robinson
Justin P Reese
Giorgio Valentini
ArXivPDFHTML

Papers citing "GRAPE for Fast and Scalable Graph Processing and random walk-based Embedding"

4 / 4 papers shown
Title
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph
  Embeddings
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings
Mehdi Ali
M. Berrendorf
Charles Tapley Hoyt
Laurent Vermue
Sahand Sharifzadeh
Volker Tresp
Jens Lehmann
13
124
0
28 Jul 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
169
665
0
03 Sep 2019
Billion-scale Network Embedding with Iterative Random Projection
Billion-scale Network Embedding with Iterative Random Projection
Ziwei Zhang
Peng Cui
Haoyang Li
Xiao Wang
Wenwu Zhu
67
73
0
07 May 2018
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
218
29,632
0
16 Jan 2013
1