Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.08406
Cited By
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
15 October 2021
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science"
3 / 3 papers shown
Title
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
151
245
0
01 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
55
17
0
23 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
192
1,232
0
08 Jan 2021
1