ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08636
  4. Cited By
DPC: Unsupervised Deep Point Correspondence via Cross and Self
  Construction

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction

16 October 2021
Itai Lang
Dvir Ginzburg
S. Avidan
D. Raviv
    3DPC
ArXivPDFHTML

Papers citing "DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction"

9 / 9 papers shown
Title
SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
Chengzhi Wu
Yuxin Wan
Hao Fu
Julius Pfrommer
Zeyun Zhong
Junwei Zheng
Jiaming Zhang
Jürgen Beyerer
3DPC
45
0
0
28 Apr 2025
Denoising Functional Maps: Diffusion Models for Shape Correspondence
Denoising Functional Maps: Diffusion Models for Shape Correspondence
Aleksei Zhuravlev
Zorah Lähner
Vladislav Golyanik
DiffM
63
1
0
03 Mar 2025
Mesh2SSM++: A Probabilistic Framework for Unsupervised Learning of Statistical Shape Model of Anatomies from Surface Meshes
Mesh2SSM++: A Probabilistic Framework for Unsupervised Learning of Statistical Shape Model of Anatomies from Surface Meshes
Krithika S. Iyer
Mokshagna Sai Teja Karanam
Shireen Elhabian
59
0
0
11 Feb 2025
Non-Rigid Shape Registration via Deep Functional Maps Prior
Non-Rigid Shape Registration via Deep Functional Maps Prior
Puhua Jiang
Mingze Sun
Ruqi Huang
19
10
0
08 Nov 2023
Deep Confidence Guided Distance for 3D Partial Shape Registration
Deep Confidence Guided Distance for 3D Partial Shape Registration
Dvir Ginzburg
D. Raviv
3DV
3DPC
6
3
0
27 Jan 2022
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for
  3D Point Clouds
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
Yiming Zeng
Y. Qian
Zhiyu Zhu
Junhui Hou
Hui Yuan
Ying He
3DPC
97
65
0
31 Dec 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
107
161
0
22 Jul 2020
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
115
325
0
13 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
1