ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10804
  4. Cited By
Identifiable Deep Generative Models via Sparse Decoding

Identifiable Deep Generative Models via Sparse Decoding

20 October 2021
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
    BDL
ArXivPDFHTML

Papers citing "Identifiable Deep Generative Models via Sparse Decoding"

30 / 30 papers shown
Title
Time-varying Factor Augmented Vector Autoregression with Grouped Sparse Autoencoder
Yiyong Luo
Brooks Paige
Jim Griffin
CML
44
0
0
06 Mar 2025
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
64
3
0
30 Oct 2024
LASERS: LAtent Space Encoding for Representations with Sparsity for
  Generative Modeling
LASERS: LAtent Space Encoding for Representations with Sparsity for Generative Modeling
Xin Li
Anand Sarwate
21
0
0
16 Sep 2024
On the Identifiability of Sparse ICA without Assuming Non-Gaussianity
On the Identifiability of Sparse ICA without Assuming Non-Gaussianity
Ignavier Ng
Yujia Zheng
Xinshuai Dong
Kun Zhang
CML
32
5
0
19 Aug 2024
Linear causal disentanglement via higher-order cumulants
Linear causal disentanglement via higher-order cumulants
Paula Leyes Carreno
Chiara Meroni
A. Seigal
CML
31
0
0
05 Jul 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
40
6
0
22 May 2024
Tripod: Three Complementary Inductive Biases for Disentangled
  Representation Learning
Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning
Kyle Hsu
Jubayer Ibn Hamid
Kaylee Burns
Chelsea Finn
Jiajun Wu
CML
21
4
0
16 Apr 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
32
13
0
13 Mar 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
83
21
0
14 Feb 2024
Bayesian Transfer Learning
Bayesian Transfer Learning
Piotr M. Suder
Jason Xu
David B. Dunson
28
5
0
20 Dec 2023
The Linear Representation Hypothesis and the Geometry of Large Language
  Models
The Linear Representation Hypothesis and the Geometry of Large Language Models
Kiho Park
Yo Joong Choe
Victor Veitch
LLMSV
MILM
24
136
0
07 Nov 2023
Object-centric architectures enable efficient causal representation
  learning
Object-centric architectures enable efficient causal representation learning
Amin Mansouri
Jason S. Hartford
Yan Zhang
Yoshua Bengio
CML
OCL
OOD
21
15
0
29 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
25
9
0
24 Oct 2023
Provable Compositional Generalization for Object-Centric Learning
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
27
17
0
09 Oct 2023
Identifying Representations for Intervention Extrapolation
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
16
14
0
06 Oct 2023
Learning multi-modal generative models with permutation-invariant
  encoders and tighter variational bounds
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
8
0
0
01 Sep 2023
Additive Decoders for Latent Variables Identification and
  Cartesian-Product Extrapolation
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
34
25
0
05 Jul 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
18
6
0
02 Jul 2023
On the Identifiability of Quantized Factors
On the Identifiability of Quantized Factors
Vitória Barin Pacela
Kartik Ahuja
Simon Lacoste-Julien
Pascal Vincent
OOD
CML
15
1
0
28 Jun 2023
Learning Linear Causal Representations from Interventions under General
  Nonlinear Mixing
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
32
57
0
04 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
16
56
0
01 Jun 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
CML
18
3
0
31 May 2023
Disentanglement via Latent Quantization
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
13
24
0
28 May 2023
Expressive architectures enhance interpretability of dynamics-based
  neural population models
Expressive architectures enhance interpretability of dynamics-based neural population models
Andrew R. Sedler
Chris VerSteeg
C. Pandarinath
27
10
0
07 Dec 2022
Linear Causal Disentanglement via Interventions
Linear Causal Disentanglement via Interventions
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
13
66
0
29 Nov 2022
Synergies between Disentanglement and Sparsity: Generalization and
  Identifiability in Multi-Task Learning
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
10
32
0
26 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
21
35
0
07 Nov 2022
When are Post-hoc Conceptual Explanations Identifiable?
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
50
10
0
28 Jun 2022
Covariate-informed Representation Learning to Prevent Posterior Collapse
  of iVAE
Covariate-informed Representation Learning to Prevent Posterior Collapse of iVAE
Young-geun Kim
Y. Liu
Xue Wei
OOD
CML
20
1
0
09 Feb 2022
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
1