ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13561
  4. Cited By
Non-Gaussian Gaussian Processes for Few-Shot Regression

Non-Gaussian Gaussian Processes for Few-Shot Regression

26 October 2021
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
ArXivPDFHTML

Papers citing "Non-Gaussian Gaussian Processes for Few-Shot Regression"

12 / 12 papers shown
Title
Workload Estimation for Unknown Tasks: A Survey of Machine Learning
  Under Distribution Shift
Workload Estimation for Unknown Tasks: A Survey of Machine Learning Under Distribution Shift
Josh Bhagat Smith
Julie A. Adams
24
0
0
20 Mar 2024
Target-Free Compound Activity Prediction via Few-Shot Learning
Target-Free Compound Activity Prediction via Few-Shot Learning
Peter Eckmann
Jake Anderson
Michael K. Gilson
Rose Yu
22
1
0
27 Nov 2023
Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot
  Policy Imitation
Comparing the Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation
Massimiliano Patacchiola
Mingfei Sun
Katja Hofmann
Richard Turner
OffRL
29
1
0
23 Jun 2023
Hypernetwork approach to Bayesian MAML
Hypernetwork approach to Bayesian MAML
Piotr Borycki
Piotr Kubacki
Marcin Przewiȩźlikowski
Tomasz Kuśmierczyk
Jacek Tabor
Przemysław Spurek
BDL
19
2
0
06 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic
  Neural Network
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
30
4
0
17 Sep 2022
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
  Classification
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
Massimiliano Patacchiola
J. Bronskill
Aliaksandra Shysheya
Katja Hofmann
Sebastian Nowozin
Richard Turner
VLM
32
9
0
20 Jun 2022
TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression
TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression
Patryk Wielopolski
Maciej Ziȩba
UQCV
24
1
0
08 Jun 2022
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
Marcin Przewiȩźlikowski
P. Przybysz
Jacek Tabor
Maciej Ziȩba
Przemysław Spurek
23
18
0
31 May 2022
HyperShot: Few-Shot Learning by Kernel HyperNetworks
HyperShot: Few-Shot Learning by Kernel HyperNetworks
Marcin Sendera
Marcin Przewiȩźlikowski
Konrad Karanowski
Maciej Ziȩba
Jacek Tabor
Przemysław Spurek
VLM
27
27
0
21 Mar 2022
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
202
498
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
176
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
359
11,684
0
09 Mar 2017
1