Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.14092
Cited By
BioGrad: Biologically Plausible Gradient-Based Learning for Spiking Neural Networks
27 October 2021
Guangzhi Tang
Neelesh Kumar
Ioannis E. Polykretis
Konstantinos Michmizos
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BioGrad: Biologically Plausible Gradient-Based Learning for Spiking Neural Networks"
7 / 7 papers shown
Title
Open the box of digital neuromorphic processor: Towards effective algorithm-hardware co-design
Guangzhi Tang
A. Safa
K. Shidqi
Paul Detterer
Stefano Traferro
Mario Konijnenburg
Manolis Sifalakis
Gert-Jan van Schaik
Amirreza Yousefzadeh
27
11
0
27 Mar 2023
Intelligence Processing Units Accelerate Neuromorphic Learning
P. Sun
A. Titterton
Anjlee Gopiani
Tim Santos
A. Basu
Wei D. Lu
Jason Eshraghian
9
8
0
19 Nov 2022
Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer Spiking Neural Networks based on Spike-Timing-Dependent Plasticity
Daniel Gerlinghoff
Tao Luo
Rick Siow Mong Goh
Weng-Fai Wong
14
2
0
10 Nov 2022
Deep Reinforcement Learning with Population-Coded Spiking Neural Network for Continuous Control
Guangzhi Tang
Neelesh Kumar
Raymond Yoo
Konstantinos Michmizos
52
74
0
19 Oct 2020
Long short-term memory and learning-to-learn in networks of spiking neurons
G. Bellec
Darjan Salaj
Anand Subramoney
Robert Legenstein
Wolfgang Maass
119
481
0
26 Mar 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
129
257
0
16 Dec 2016
1