Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.15331
Cited By
Wasserstein Distance Maximizing Intrinsic Control
28 October 2021
Ishan Durugkar
S. Hansen
Stephen Spencer
Volodymyr Mnih
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wasserstein Distance Maximizing Intrinsic Control"
4 / 4 papers shown
Title
Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models
Seungjae Lee
Daniel Ekpo
Haowen Liu
Furong Huang
Abhinav Shrivastava
Jia-Bin Huang
LM&Ro
40
0
0
12 May 2025
CQM: Curriculum Reinforcement Learning with a Quantized World Model
Seungjae Lee
Daesol Cho
Jonghae Park
H. J. Kim
26
6
0
26 Oct 2023
Outcome-directed Reinforcement Learning by Uncertainty & Temporal Distance-Aware Curriculum Goal Generation
Daesol Cho
Seungjae Lee
H. J. Kim
23
14
0
27 Jan 2023
Neuroevolution is a Competitive Alternative to Reinforcement Learning for Skill Discovery
Félix Chalumeau
Raphael Boige
Bryan Lim
Valentin Macé
Maxime Allard
Arthur Flajolet
Antoine Cully
Thomas Pierrot
24
21
0
06 Oct 2022
1