ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15907
  4. Cited By
Learning to Be Cautious

Learning to Be Cautious

29 October 2021
Montaser Mohammedalamen
Dustin Morrill
Alexander Sieusahai
Yash Satsangi
Michael H. Bowling
ArXivPDFHTML

Papers citing "Learning to Be Cautious"

5 / 5 papers shown
Title
Generalization in Monitored Markov Decision Processes (Mon-MDPs)
Generalization in Monitored Markov Decision Processes (Mon-MDPs)
Montaser Mohammedalamen
Michael H. Bowling
19
0
0
13 May 2025
Beyond Bayes-optimality: meta-learning what you know you don't know
Beyond Bayes-optimality: meta-learning what you know you don't know
Jordi Grau-Moya
Grégoire Delétang
M. Kunesch
Tim Genewein
Elliot Catt
...
Jane X. Wang
Marcus Hutter
Christopher Summerfield
Shane Legg
Pedro A. Ortega
11
0
0
30 Sep 2022
The Partially Observable History Process
The Partially Observable History Process
Dustin Morrill
A. Greenwald
Michael H. Bowling
AI4CE
19
2
0
15 Nov 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach
Yinlam Chow
Aviv Tamar
Shie Mannor
Marco Pavone
67
310
0
06 Jun 2015
1