ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.00177
  4. Cited By
On Quantitative Evaluations of Counterfactuals

On Quantitative Evaluations of Counterfactuals

30 October 2021
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
ArXivPDFHTML

Papers citing "On Quantitative Evaluations of Counterfactuals"

7 / 7 papers shown
Title
Explainable bank failure prediction models: Counterfactual explanations
  to reduce the failure risk
Explainable bank failure prediction models: Counterfactual explanations to reduce the failure risk
Seyma Gunonu
Gizem Altun
Mustafa Cavus
30
0
0
14 Jul 2024
Causal Generative Explainers using Counterfactual Inference: A Case
  Study on the Morpho-MNIST Dataset
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
19
5
0
21 Jan 2024
Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
  Quantitative Evaluation
Diffusion-based Visual Counterfactual Explanations -- Towards Systematic Quantitative Evaluation
Philipp Vaeth
Alexander M. Fruehwald
Benjamin Paassen
Magda Gregorova
DiffM
27
4
0
11 Aug 2023
Diffeomorphic Counterfactuals with Generative Models
Diffeomorphic Counterfactuals with Generative Models
Ann-Kathrin Dombrowski
Jan E. Gerken
Klaus-Robert Muller
Pan Kessel
DiffM
BDL
22
15
0
10 Jun 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
24
55
0
29 Mar 2022
Fighting Money Laundering with Statistics and Machine Learning
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
28
13
0
11 Jan 2022
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
1