ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01395
  4. Cited By
Training Certifiably Robust Neural Networks with Efficient Local
  Lipschitz Bounds

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds

2 November 2021
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
ArXivPDFHTML

Papers citing "Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds"

50 / 51 papers shown
Title
Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems
Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems
H. Li
Xiangru Zhong
Bin Hu
Huan Zhang
38
0
0
23 Apr 2025
LipShiFT: A Certifiably Robust Shift-based Vision Transformer
LipShiFT: A Certifiably Robust Shift-based Vision Transformer
Rohan Menon
Nicola Franco
Stephan Günnemann
53
0
0
18 Mar 2025
APECS: Adaptive Personalized Control System Architecture
Marius F. R. Juston
Alex Gisi
William R. Norris
Dustin Nottage
A. Soylemezoglu
41
0
0
10 Mar 2025
Achieving Domain-Independent Certified Robustness via Knowledge
  Continuity
Achieving Domain-Independent Certified Robustness via Knowledge Continuity
Alan Sun
Chiyu Ma
Kenneth Ge
Soroush Vosoughi
28
0
0
03 Nov 2024
Certified Robustness for Deep Equilibrium Models via Serialized Random
  Smoothing
Certified Robustness for Deep Equilibrium Models via Serialized Random Smoothing
Weizhi Gao
Zhichao Hou
Han Xu
Xiaorui Liu
AAML
26
0
0
01 Nov 2024
On Using Certified Training towards Empirical Robustness
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
33
1
0
02 Oct 2024
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
29
3
0
03 Jul 2024
Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve
  Adversarial Robustness
Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness
Erh-Chung Chen
Pin-Yu Chen
I-Hsin Chung
Che-Rung Lee
32
2
0
28 Jun 2024
Compositional Curvature Bounds for Deep Neural Networks
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
23
0
0
07 Jun 2024
Boosting Few-Pixel Robustness Verification via Covering Verification
  Designs
Boosting Few-Pixel Robustness Verification via Covering Verification Designs
Yuval Shapira
Naor Wiesel
Shahar Shabelman
Dana Drachsler-Cohen
AAML
18
0
0
17 May 2024
Gradient-Regularized Out-of-Distribution Detection
Gradient-Regularized Out-of-Distribution Detection
Sina Sharifi
Taha Entesari
Bardia Safaei
Vishal M. Patel
Mahyar Fazlyab
OODD
21
4
0
18 Apr 2024
Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized
  Smoothing
Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing
Chengyan Fu
Wenjie Wang
AAML
27
0
0
08 Apr 2024
Adversarial Feature Alignment: Balancing Robustness and Accuracy in Deep
  Learning via Adversarial Training
Adversarial Feature Alignment: Balancing Robustness and Accuracy in Deep Learning via Adversarial Training
L. Park
Jaeuk Kim
Myung Gyo Oh
Jaewoo Park
T.-H. Kwon
AAML
30
4
0
19 Feb 2024
Evaluating Adversarial Robustness of Low dose CT Recovery
Evaluating Adversarial Robustness of Low dose CT Recovery
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Hannah Dröge
Michael Moeller
OOD
AAML
18
3
0
18 Feb 2024
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted
  Activations
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations
Patricia Pauli
Aaron J. Havens
Alexandre Araujo
Siddharth Garg
Farshad Khorrami
Frank Allgöwer
Bin Hu
33
4
0
25 Jan 2024
Do stable neural networks exist for classification problems? -- A new
  view on stability in AI
Do stable neural networks exist for classification problems? -- A new view on stability in AI
Z. N. D. Liu
A. C. Hansen
15
0
0
15 Jan 2024
The Pros and Cons of Adversarial Robustness
The Pros and Cons of Adversarial Robustness
Yacine Izza
João Marques-Silva
AAML
17
1
0
18 Dec 2023
Fast Trainable Projection for Robust Fine-Tuning
Fast Trainable Projection for Robust Fine-Tuning
Junjiao Tian
Yen-Cheng Liu
James Seale Smith
Z. Kira
OOD
22
11
0
29 Oct 2023
A Recipe for Improved Certifiable Robustness
A Recipe for Improved Certifiable Robustness
Kai Hu
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
15
7
0
04 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
11
11
0
29 Sep 2023
The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing
The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing
Blaise Delattre
Alexandre Araujo
Quentin Barthélemy
A. Allauzen
AAML
16
5
0
28 Sep 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
4
4
0
12 Sep 2023
Structure-Aware Robustness Certificates for Graph Classification
Structure-Aware Robustness Certificates for Graph Classification
Pierre Osselin
Henry Kenlay
Xiaowen Dong
16
0
0
20 Jun 2023
Towards Better Certified Segmentation via Diffusion Models
Towards Better Certified Segmentation via Diffusion Models
Othmane Laousy
Alexandre Araujo
G. Chassagnon
M. Revel
S. Garg
Farshad Khorrami
Maria Vakalopoulou
DiffM
26
2
0
16 Jun 2023
Task-aware Distributed Source Coding under Dynamic Bandwidth
Task-aware Distributed Source Coding under Dynamic Bandwidth
Po-han Li
S. Ankireddy
Ruihan Zhao
Hossein Nourkhiz Mahjoub
Ehsan Moradi-Pari
Ufuk Topcu
Sandeep P. Chinchali
Hyeji Kim
10
9
0
24 May 2023
Expressive Losses for Verified Robustness via Convex Combinations
Expressive Losses for Verified Robustness via Convex Combinations
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
A. Lomuscio
AAML
23
11
0
23 May 2023
Ortho-ODE: Enhancing Robustness and of Neural ODEs against Adversarial
  Attacks
Ortho-ODE: Enhancing Robustness and of Neural ODEs against Adversarial Attacks
V. Purohit
AAML
8
1
0
16 May 2023
Certifying Ensembles: A General Certification Theory with
  S-Lipschitzness
Certifying Ensembles: A General Certification Theory with S-Lipschitzness
Aleksandar Petrov
Francisco Eiras
Amartya Sanyal
Philip H. S. Torr
Adel Bibi
UQCV
11
1
0
25 Apr 2023
Efficient Symbolic Reasoning for Neural-Network Verification
Efficient Symbolic Reasoning for Neural-Network Verification
Zi Wang
S. Jha
Krishnamurthy Dvijotham
Dvijotham
AAML
NAI
14
1
0
23 Mar 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
20
52
0
06 Mar 2023
Consistent Valid Physically-Realizable Adversarial Attack against
  Crowd-flow Prediction Models
Consistent Valid Physically-Realizable Adversarial Attack against Crowd-flow Prediction Models
Hassan Ali
M. A. Butt
F. Filali
Ala I. Al-Fuqaha
Junaid Qadir
AAML
9
2
0
05 Mar 2023
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Grigory Khromov
Sidak Pal Singh
19
7
0
21 Feb 2023
CertViT: Certified Robustness of Pre-Trained Vision Transformers
CertViT: Certified Robustness of Pre-Trained Vision Transformers
K. Gupta
S. Verma
ViT
9
4
0
01 Feb 2023
Unlocking Deterministic Robustness Certification on ImageNet
Unlocking Deterministic Robustness Certification on ImageNet
Kaiqin Hu
Andy Zou
Zifan Wang
Klas Leino
Matt Fredrikson
OOD
16
12
0
29 Jan 2023
Limitations of Piecewise Linearity for Efficient Robustness
  Certification
Limitations of Piecewise Linearity for Efficient Robustness Certification
Klas Leino
AAML
25
6
0
21 Jan 2023
Improving Robust Generalization by Direct PAC-Bayesian Bound
  Minimization
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
21
5
0
22 Nov 2022
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
18
9
0
15 Nov 2022
Efficiently Computing Local Lipschitz Constants of Neural Networks via
  Bound Propagation
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation
Zhouxing Shi
Yihan Wang
Huan Zhang
Zico Kolter
Cho-Jui Hsieh
84
39
0
13 Oct 2022
On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning
On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning
Lorenzo Bonicelli
Matteo Boschini
Angelo Porrello
C. Spampinato
Simone Calderara
CLL
10
44
0
12 Oct 2022
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean
  Function Perspective
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective
Bohang Zhang
Du Jiang
Di He
Liwei Wang
OOD
25
47
0
04 Oct 2022
Robust-by-Design Classification via Unitary-Gradient Neural Networks
Robust-by-Design Classification via Unitary-Gradient Neural Networks
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
34
5
0
09 Sep 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
15
11
0
14 Jul 2022
IBP Regularization for Verified Adversarial Robustness via
  Branch-and-Bound
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
29
17
0
29 Jun 2022
On the Properties of Adversarially-Trained CNNs
On the Properties of Adversarially-Trained CNNs
Mattia Carletti
M. Terzi
Gian Antonio Susto
AAML
11
1
0
17 Mar 2022
A Quantitative Geometric Approach to Neural-Network Smoothness
A Quantitative Geometric Approach to Neural-Network Smoothness
Z. Wang
Gautam Prakriya
S. Jha
26
13
0
02 Mar 2022
A Dynamical System Perspective for Lipschitz Neural Networks
A Dynamical System Perspective for Lipschitz Neural Networks
Laurent Meunier
Blaise Delattre
Alexandre Araujo
A. Allauzen
26
51
0
25 Oct 2021
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
30
54
0
05 Aug 2021
Pay attention to your loss: understanding misconceptions about
  1-Lipschitz neural networks
Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks
Louis Bethune
Thibaut Boissin
M. Serrurier
Franck Mamalet
Corentin Friedrich
Alberto González Sanz
17
21
0
11 Apr 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
125
0
16 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,471
0
17 Apr 2017
12
Next