Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.01460
Cited By
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
2 November 2021
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels"
28 / 28 papers shown
Title
High-Dimensional Bayesian Optimization via Random Projection of Manifold Subspaces
Quoc-Anh Hoang Nguyen
The Hung Tran
75
1
0
21 Dec 2024
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
26
0
0
28 Oct 2024
Sample-efficient Bayesian Optimisation Using Known Invariances
Theodore Brown
Alexandru Cioba
Ilija Bogunovic
28
2
0
22 Oct 2024
MANTRA: The Manifold Triangulations Assemblage
Rubén Ballester
Ernst Röell
Daniel Bin Schmid
Mathieu Alain
Sergio Escalera
Carles Casacuberta
Bastian Rieck
44
2
0
03 Oct 2024
Bayesian Optimal Experimental Design for Robot Kinematic Calibration
Ersin Daş
Thomas Touma
J. W. Burdick
27
0
0
17 Sep 2024
The GeometricKernels Package: Heat and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs
P. Mostowsky
Vincent Dutordoir
I. Azangulov
Noémie Jaquier
Michael John Hutchinson
Aditya Ravuri
Leonel Rozo
Alexander Terenin
Viacheslav Borovitskiy
35
5
0
10 Jul 2024
Non-parametric regression for robot learning on manifolds
P. C. López-Custodio
K. Bharath
A. Kucukyilmaz
S. P. Preston
23
1
0
30 Oct 2023
Unraveling the Single Tangent Space Fallacy: An Analysis and Clarification for Applying Riemannian Geometry in Robot Learning
Noémie Jaquier
Leonel Rozo
Tamim Asfour
18
6
0
11 Oct 2023
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
28
7
0
19 Sep 2023
Alignment of Density Maps in Wasserstein Distance
A. Singer
Ruiyi Yang
25
8
0
21 May 2023
The e-Bike Motor Assembly: Towards Advanced Robotic Manipulation for Flexible Manufacturing
Leonel Rozo
A. Kupcsik
Philipp Schillinger
Meng Guo
R. Krug
...
Patrick Kesper
Sabrina Hoppe
Hanna Ziesche
M. Burger
Kai O. Arras
28
5
0
20 Apr 2023
The Matérn Model: A Journey through Statistics, Numerical Analysis and Machine Learning
Emilio Porcu
M. Bevilacqua
R. Schaback
Chris J. Oates
19
14
0
05 Mar 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
20
6
0
16 Feb 2023
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces
I. Azangulov
A. Smolensky
Alexander Terenin
Viacheslav Borovitskiy
32
14
0
30 Jan 2023
Extrinsic Bayesian Optimizations on Manifolds
Yi-Zheng Fang
Mu Niu
P. Cheung
Lizhen Lin
16
1
0
21 Dec 2022
On power sum kernels on symmetric groups
I. Azangulov
Viacheslav Borovitskiy
A. Smolensky
19
0
0
10 Nov 2022
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Jiechao Zhang
Hadi Beik-Mohammadi
Leonel Rozo
16
15
0
06 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
28
7
0
03 Nov 2022
Optimization on Manifolds via Graph Gaussian Processes
Hwanwoo Kim
D. Sanz-Alonso
Ruiyi Yang
30
2
0
20 Oct 2022
Geometric Reinforcement Learning For Robotic Manipulation
Naseem Alhousani
Matteo Saveriano
Ibrahim Sevinc
Talha Abdulkuddus
Hatice Kose
Fares J. Abu-Dakka
28
6
0
14 Oct 2022
Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds
Noémie Jaquier
Leonel Rozo
Miguel González-Duque
Viacheslav Borovitskiy
Tamim Asfour
43
7
0
04 Oct 2022
Riemannian geometry as a unifying theory for robot motion learning and control
Noémie Jaquier
Tamim Asfour
AI4CE
19
5
0
30 Sep 2022
Optimizing Demonstrated Robot Manipulation Skills for Temporal Logic Constraints
Akshay Dhonthi
Philipp Schillinger
Leonel Rozo
Daniele Nardi
28
7
0
07 Sep 2022
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case
I. Azangulov
A. Smolensky
Alexander Terenin
Viacheslav Borovitskiy
39
21
0
31 Aug 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
197
0
07 Jun 2022
Visualizing Riemannian data with Rie-SNE
A. Bergsson
Søren Hauberg
25
4
0
17 Mar 2022
Gaussian-Process-based Robot Learning from Demonstration
Miguel Arduengo
Adria Colomé
J. Lobo-Prat
Luis Sentis
Carme Torras
33
17
0
23 Feb 2020
1