Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.01875
Cited By
Subquadratic Overparameterization for Shallow Neural Networks
2 November 2021
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Subquadratic Overparameterization for Shallow Neural Networks"
25 / 25 papers shown
Title
MLPs at the EOC: Dynamics of Feature Learning
Dávid Terjék
MLT
41
0
0
18 Feb 2025
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurélien Lucchi
33
4
0
16 Oct 2024
Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization
Feihu Huang
35
4
0
25 Jul 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
26
1
0
19 May 2024
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
28
1
0
08 Nov 2023
On the Convergence of Encoder-only Shallow Transformers
Yongtao Wu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
42
5
0
02 Nov 2023
Global Convergence of SGD For Logistic Loss on Two Layer Neural Nets
Pulkit Gopalani
Samyak Jha
Anirbit Mukherjee
14
2
0
17 Sep 2023
Approximation Results for Gradient Descent trained Neural Networks
G. Welper
37
0
0
09 Sep 2023
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
Jeongyeol Kwon
Dohyun Kwon
Steve Wright
Robert D. Nowak
26
25
0
04 Sep 2023
Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape
Kedar Karhadkar
Michael Murray
Hanna Tseran
Guido Montúfar
10
6
0
31 May 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
19
18
0
07 Mar 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Improved Convergence Guarantees for Shallow Neural Networks
A. Razborov
ODL
17
1
0
05 Dec 2022
Finite Sample Identification of Wide Shallow Neural Networks with Biases
M. Fornasier
T. Klock
Marco Mondelli
Michael Rauchensteiner
11
6
0
08 Nov 2022
Optimization for Amortized Inverse Problems
Tianci Liu
Tong Yang
Quan Zhang
Qi Lei
24
4
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach
Mao Ye
B. Liu
S. Wright
Peter Stone
Qian Liu
72
82
0
19 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
25
6
0
17 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
35
19
0
15 Sep 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
13
3
0
02 Jul 2022
A Framework for Overparameterized Learning
Dávid Terjék
Diego González-Sánchez
MLT
11
1
0
26 May 2022
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari
Mohammad Hossein Amani
Marco Mondelli
12
26
0
20 May 2022
Geometric Regularization from Overparameterization
Nicholas J. Teague
17
1
0
18 Feb 2022
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
22
16
0
05 Dec 2021
How much pre-training is enough to discover a good subnetwork?
Cameron R. Wolfe
Fangshuo Liao
Qihan Wang
J. Kim
Anastasios Kyrillidis
17
3
0
31 Jul 2021
1