Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.02801
Cited By
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
1 November 2021
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems"
47 / 47 papers shown
Title
A general physics-constrained method for the modelling of equation's closure terms with sparse data
Tian Chen
Shengping Liu
Li Liu
Heng Yong
PINN
AI4CE
43
0
0
30 Apr 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
DAE-KAN: A Kolmogorov-Arnold Network Model for High-Index Differential-Algebraic Equations
Kai Luo
Juan Tang
Mingchao Cai
Xiaoqing Zeng
Manqi Xie
Ming Yan
31
0
0
22 Apr 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
70
2
0
08 Mar 2025
Physics-informed deep learning for infectious disease forecasting
Y. Qian
Éric Marty
Avranil Basu
Avranil Basu
Eamon B. O'Dea
Xianqiao Wang
Spencer Fox
Pejman Rohani
John M. Drake
He Li
PINN
AI4CE
80
2
0
16 Jan 2025
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min-Bin Lin
Kenji Kawaguchi
136
4
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
24
2
0
04 Oct 2024
Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis
Hyunwoo Lee
Hayoung Choi
Hyunju Kim
39
1
0
03 Oct 2024
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
Bocheng Zeng
Qi Wang
M. Yan
Y. Liu
Ruizhi Chengze
Yi Zhang
Hongsheng Liu
Zidong Wang
Hao Sun
AI4CE
40
3
0
02 Oct 2024
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
30
2
0
27 Sep 2024
Physics-informed neural networks for parameter learning of wildfire spreading
K. Vogiatzoglou
C. Papadimitriou
V. Bontozoglou
Konstantinos Ampountolas
33
1
0
20 Jun 2024
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
38
3
0
05 Jun 2024
Accurate adaptive deep learning method for solving elliptic problems
Jingyong Ying
Yaqi Xie
Jiao Li
Hongqiao Wang
34
1
0
29 Apr 2024
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
25
6
0
28 Dec 2023
Transfer learning for improved generalizability in causal physics-informed neural networks for beam simulations
Taniya Kapoor
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
PINN
19
15
0
01 Nov 2023
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
25
0
0
18 Oct 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
29
1
0
12 Jul 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
23
6
0
06 Jul 2023
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
19
2
0
01 Jul 2023
Efficient Training of Physics-Informed Neural Networks with Direct Grid Refinement Algorithm
Shikhar Nilabh
F. Grandia
39
1
0
14 Jun 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
26
4
0
21 May 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
29
4
0
06 Mar 2023
Physics-informed neural networks for solving forward and inverse problems in complex beam systems
Taniya Kapoor
Hongrui Wang
A. Núñez
R. Dollevoet
AI4CE
PINN
21
46
0
02 Mar 2023
PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss
Fabian Heldmann
Sarah Treibert
Matthias Ehrhardt
K. Klamroth
35
20
0
03 Feb 2023
Deep learning for full-field ultrasonic characterization
Yang Xu
Fatemeh Pourahmadian
Jian Song
Congli Wang
AI4CE
29
4
0
06 Jan 2023
Physics-Informed Neural Networks for Prognostics and Health Management of Lithium-Ion Batteries
Pengfei Wen
Z. Ye
Yong Li
Shaowei Chen
Pu Xie
Shuai Zhao
30
35
0
02 Jan 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
13
22
0
17 Dec 2022
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
23
6
0
28 Nov 2022
Gradient-enhanced deep neural network approximations
Xiaodong Feng
Li Zeng
UQCV
26
5
0
08 Nov 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
Asymptotic-Preserving Neural Networks for hyperbolic systems with diffusive scaling
Giulia Bertaglia
AI4CE
16
5
0
17 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
77
0
01 Oct 2022
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
18
0
0
29 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
19
3
0
06 Sep 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
M. Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
24
352
0
21 Jul 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
24
0
0
21 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
32
39
0
21 Jun 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
69
40
0
16 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
35
7
0
15 May 2022
RAR-PINN algorithm for the data-driven vector-soliton solutions and parameter discovery of coupled nonlinear equations
Shulan Qin
Min Li
Tao Xu
Shaotong Dong
17
9
0
29 Apr 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
20
155
0
12 Feb 2022
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
222
0
26 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
211
157
0
22 Jul 2020
1