Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.04840
Cited By
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
8 November 2021
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods"
46 / 46 papers shown
Title
FairACE: Achieving Degree Fairness in Graph Neural Networks via Contrastive and Adversarial Group-Balanced Training
J. Liu
Xiaoqian Jiang
X. Li
Bohan Zhang
J. Zhang
32
0
0
12 Apr 2025
Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
Jasraj Singh
Keyue Jiang
Brooks Paige
Laura Toni
59
1
0
11 Feb 2025
Norm Augmented Graph AutoEncoders for Link Prediction
Yunhui Liu
Huaisong Zhang
Xinyi Gao
Liuye Guo
Zhen Tao
Tieke He
38
0
0
09 Feb 2025
Training MLPs on Graphs without Supervision
Zehong Wang
Zheyuan Zhang
Chuxu Zhang
Yanfang Ye
59
5
0
05 Dec 2024
SPARC: Spectral Architectures Tackling the Cold-Start Problem in Graph Learning
Yahel Jacobs
Reut Dayan
Uri Shaham
39
0
0
03 Nov 2024
Optimizing Long-tailed Link Prediction in Graph Neural Networks through Structure Representation Enhancement
Yakun Wang
Daixin Wang
Hongrui Liu
Bin Hu
Yingcui Yan
Qiyang Zhang
Zhiqiang Zhang
20
6
0
30 Jul 2024
HyperAggregation: Aggregating over Graph Edges with Hypernetworks
N. Lell
A. Scherp
GNN
35
0
0
16 Jul 2024
Graph Knowledge Distillation to Mixture of Experts
P. Rumiantsev
Mark Coates
18
0
0
17 Jun 2024
GraphStorm: all-in-one graph machine learning framework for industry applications
Da Zheng
Xiang Song
Qi Zhu
Jian Zhang
Theodore Vasiloudis
...
Qingjun Cui
Huzefa Rangwala
Belinda Zeng
Christos Faloutsos
George Karypis
AI4TS
AI4CE
VLM
32
4
0
10 Jun 2024
LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning
Junjie Xu
Zongyu Wu
Min Lin
Xiang Zhang
Suhang Wang
30
11
0
03 Jun 2024
Node Duplication Improves Cold-start Link Prediction
Zhichun Guo
Tong Zhao
Yozen Liu
Kaiwen Dong
William Shiao
Neil Shah
Nitesh V. Chawla
AI4CE
15
3
0
15 Feb 2024
Propagate & Distill: Towards Effective Graph Learners Using Propagation-Embracing MLPs
Yong-Min Shin
Won-Yong Shin
15
1
0
29 Nov 2023
Unveiling the Unseen Potential of Graph Learning through MLPs: Effective Graph Learners Using Propagation-Embracing MLPs
Yong-Min Shin
Won-Yong Shin
11
1
0
20 Nov 2023
Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
Shuai Zheng
Zhizhe Liu
Zhenfeng Zhu
Xingxing Zhang
Jianxin Li
Yao-Min Zhao
25
0
0
26 Oct 2023
GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via Test-time Augmentation
Mingxuan Ju
Tong Zhao
Wenhao Yu
Neil Shah
Yanfang Ye
23
12
0
01 Oct 2023
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions
Zemin Liu
Yuan N. Li
Nan-Fang Chen
Qian Wang
Bryan Hooi
Bin He
FaML
11
12
0
26 Aug 2023
SAILOR: Structural Augmentation Based Tail Node Representation Learning
Jie Liao
Jintang Li
Liang Chen
Bing Wu
Yatao Bian
Zibin Zheng
17
3
0
13 Aug 2023
VQGraph: Rethinking Graph Representation Space for Bridging GNNs and MLPs
Ling Yang
Ye Tian
Minkai Xu
Zhongyi Liu
Shenda Hong
Wei Qu
Wentao Zhang
Bin Cui
Muhan Zhang
J. Leskovec
19
13
0
04 Aug 2023
Collaborative Graph Neural Networks for Attributed Network Embedding
Qiaoyu Tan
Xin Zhang
Xiao Shi Huang
Haojun Chen
Jundong Li
Xia Hu
22
11
0
22 Jul 2023
Shared Growth of Graph Neural Networks via Prompted Free-direction Knowledge Distillation
Kaituo Feng
Yikun Miao
Changsheng Li
Ye Yuan
Guoren Wang
18
0
0
02 Jul 2023
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation
Yuwei Cao
Liangwei Yang
Chen Wang
Zhiwei Liu
Hao Peng
Chenyu You
Philip S. Yu
13
21
0
26 Jun 2023
A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and Customized Hardware
Shichang Zhang
Atefeh Sohrabizadeh
Cheng Wan
Zijie Huang
Ziniu Hu
Yewen Wang
Yingyan Lin
Lin
Jason Cong
Yizhou Sun
GNN
AI4CE
29
22
0
24 Jun 2023
Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication
A. Jaiswal
Shiwei Liu
Tianlong Chen
Ying Ding
Zhangyang Wang
GNN
31
5
0
18 Jun 2023
Graph Entropy Minimization for Semi-supervised Node Classification
Yi Luo
Guangchun Luo
Ke Qin
Aiguo Chen
20
0
0
31 May 2023
Modeling Dynamic Environments with Scene Graph Memory
Andrey Kurenkov
Michael Lingelbach
Tanmay Agarwal
Emily Jin
Chengshu Li
Ruohan Zhang
Li Fei-Fei
Jiajun Wu
Silvio Savarese
Roberto Martín-Martín
24
11
0
27 May 2023
Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs
Costas Mavromatis
V. Ioannidis
Shen Wang
Da Zheng
Soji Adeshina
Jun Ma
Han Zhao
Christos Faloutsos
George Karypis
11
29
0
20 Apr 2023
Graph Collaborative Signals Denoising and Augmentation for Recommendation
Ziwei Fan
Ke Xu
Zhang Dong
Hao Peng
Jiawei Zhang
Philip S. Yu
27
40
0
06 Apr 2023
Structural Imbalance Aware Graph Augmentation Learning
Zulong Liu
Kejia Chen
Zheng Liu
21
0
0
24 Mar 2023
You Only Transfer What You Share: Intersection-Induced Graph Transfer Learning for Link Prediction
Wenqing Zheng
E-Wen Huang
Nikhil S. Rao
Zhangyang Wang
Karthik Subbian
18
4
0
27 Feb 2023
Graph-based Knowledge Distillation: A survey and experimental evaluation
Jing Liu
Tongya Zheng
Guanzheng Zhang
Qinfen Hao
17
8
0
27 Feb 2023
Knowledge Distillation on Graphs: A Survey
Yijun Tian
Shichao Pei
Xiangliang Zhang
Chuxu Zhang
Nitesh V. Chawla
10
28
0
01 Feb 2023
OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization
Hengrui Zhang
Shen Wang
V. Ioannidis
Soji Adeshina
Jiani Zhang
Xiao Qin
Christos Faloutsos
Da Zheng
George Karypis
Philip S. Yu
24
2
0
31 Jan 2023
GLINKX: A Scalable Unified Framework For Homophilous and Heterophilous Graphs
Marios Papachristou
Rishab Goel
Frank Portman
M. Miller
Rong Jin
10
0
0
01 Nov 2022
TuneUp: A Simple Improved Training Strategy for Graph Neural Networks
Weihua Hu
Kaidi Cao
Kexin Huang
E-Wen Huang
Karthik Subbian
Kenji Kawaguchi
J. Leskovec
22
0
0
26 Oct 2022
Symbolic Distillation for Learned TCP Congestion Control
S. Sharan
Wenqing Zheng
Kuo-Feng Hsu
Jiarong Xing
Ang Chen
Zhangyang Wang
10
5
0
24 Oct 2022
SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP
Jie Chen
Shouzhen Chen
Mingyuan Bai
Junbin Gao
Junping Zhang
Jian Pu
24
10
0
18 Oct 2022
Old can be Gold: Better Gradient Flow can Make Vanilla-GCNs Great Again
Ajay Jaiswal
Peihao Wang
Tianlong Chen
Justin F. Rousseau
Ying Ding
Zhangyang Wang
14
10
0
14 Oct 2022
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking
Keyu Duan
Zirui Liu
Peihao Wang
Wenqing Zheng
Kaixiong Zhou
Tianlong Chen
Xia Hu
Zhangyang Wang
GNN
15
57
0
14 Oct 2022
Boosting Graph Neural Networks via Adaptive Knowledge Distillation
Zhichun Guo
Chunhui Zhang
Yujie Fan
Yijun Tian
Chuxu Zhang
Nitesh V. Chawla
13
32
0
12 Oct 2022
Linkless Link Prediction via Relational Distillation
Zhichun Guo
William Shiao
Shichang Zhang
Yozen Liu
Nitesh V. Chawla
Neil Shah
Tong Zhao
13
41
0
11 Oct 2022
NOSMOG: Learning Noise-robust and Structure-aware MLPs on Graphs
Yijun Tian
Chuxu Zhang
Zhichun Guo
Xiangliang Zhang
Nitesh V. Chawla
29
14
0
22 Aug 2022
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
26
28
0
03 Jun 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
27
18
0
13 Mar 2022
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
19
61
0
24 Aug 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
1