ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05803
  4. Cited By
Gradients are Not All You Need

Gradients are Not All You Need

10 November 2021
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
ArXivPDFHTML

Papers citing "Gradients are Not All You Need"

18 / 68 papers shown
Title
Training Efficient Controllers via Analytic Policy Gradient
Training Efficient Controllers via Analytic Policy Gradient
Nina Wiedemann
Valentin Wüest
Antonio Loquercio
M. Müller
Dario Floreano
Davide Scaramuzza
OffRL
19
17
0
26 Sep 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
73
64
0
26 Sep 2022
Simplifying Model-based RL: Learning Representations, Latent-space
  Models, and Policies with One Objective
Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective
Raj Ghugare
Homanga Bharadhwaj
Benjamin Eysenbach
Sergey Levine
Ruslan Salakhutdinov
OffRL
40
25
0
18 Sep 2022
Learning Pair Potentials using Differentiable Simulations
Learning Pair Potentials using Differentiable Simulations
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
17
23
0
16 Sep 2022
Differentiable Programming for Earth System Modeling
Differentiable Programming for Earth System Modeling
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
11
15
0
29 Aug 2022
Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations
  Among Team Members
Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations Among Team Members
Daphne Cornelisse
Thomas Rood
Mateusz Malinowski
Yoram Bachrach
Tal Kachman
25
10
0
18 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
22
77
0
03 Aug 2022
Differentiable Dynamics for Articulated 3d Human Motion Reconstruction
Differentiable Dynamics for Articulated 3d Human Motion Reconstruction
Erik Gartner
Mykhaylo Andriluka
Erwin Coumans
C. Sminchisescu
3DH
38
39
0
24 May 2022
Training neural networks using Metropolis Monte Carlo and an adaptive
  variant
Training neural networks using Metropolis Monte Carlo and an adaptive variant
S. Whitelam
V. Selin
Ian Benlolo
Corneel Casert
Isaac Tamblyn
BDL
11
7
0
16 May 2022
Leveraging Reward Gradients For Reinforcement Learning in Differentiable
  Physics Simulations
Leveraging Reward Gradients For Reinforcement Learning in Differentiable Physics Simulations
Sean Gillen
Katie Byl
AI4CE
11
3
0
06 Mar 2022
Forecasting Global Weather with Graph Neural Networks
Forecasting Global Weather with Graph Neural Networks
R. Keisler
AI4Cl
26
159
0
15 Feb 2022
Reverse Back Propagation to Make Full Use of Derivative
Reverse Back Propagation to Make Full Use of Derivative
Weiming Xiong
Ruoyu Yang
21
0
0
13 Feb 2022
EvoJAX: Hardware-Accelerated Neuroevolution
EvoJAX: Hardware-Accelerated Neuroevolution
Yujin Tang
Yingtao Tian
David R Ha
34
42
0
10 Feb 2022
Do Differentiable Simulators Give Better Policy Gradients?
Do Differentiable Simulators Give Better Policy Gradients?
H. Suh
Max Simchowitz
K. Zhang
Russ Tedrake
25
94
0
02 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
70
42
0
01 Feb 2022
Analytically Integratable Zero-restlength Springs for Capturing Dynamic
  Modes unrepresented by Quasistatic Neural Networks
Analytically Integratable Zero-restlength Springs for Capturing Dynamic Modes unrepresented by Quasistatic Neural Networks
Yongxu Jin
Yushan Han
Z. Geng
Joseph Teran
Ronald Fedkiw
12
5
0
25 Jan 2022
Input Convex Gradient Networks
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
10
15
0
23 Nov 2021
Variational Optimization
Variational Optimization
J. Staines
David Barber
DRL
57
53
0
18 Dec 2012
Previous
12