Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.06420
Cited By
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
11 November 2021
Waddah Saeed
C. Omlin
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities"
34 / 84 papers shown
Title
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents
Quentin Delfosse
Sebastian Sztwiertnia
M. Rothermel
Wolfgang Stammer
Kristian Kersting
41
18
0
11 Jan 2024
Combining Embedding-Based and Semantic-Based Models for Post-hoc Explanations in Recommender Systems
Ngoc Luyen Lê
Marie-Hélène Abel
Philippe Gouspillou
13
5
0
09 Jan 2024
Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines
Nikolay O. Nikitin
Maiia Pinchuk
Valerii Pokrovskii
Peter Shevchenko
Andrey Getmanov
Yaroslav Aksenkin
I. Revin
Andrey Stebenkov
Ekaterina Poslavskaya
Anna V. Kaluzhnaya
18
0
0
22 Dec 2023
Explainable artificial intelligence approaches for brain-computer interfaces: a review and design space
Param S. Rajpura
H. Cecotti
Y. Meena
16
6
0
20 Dec 2023
User Friendly and Adaptable Discriminative AI: Using the Lessons from the Success of LLMs and Image Generation Models
S. Nguyen
Theja Tulabandhula
M. Watson-Manheim
15
2
0
11 Dec 2023
Explainable AI is Responsible AI: How Explainability Creates Trustworthy and Socially Responsible Artificial Intelligence
Stephanie B. Baker
Wei Xiang
XAI
23
5
0
04 Dec 2023
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
11
0
0
20 Nov 2023
A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions
Junchao Wu
Shu Yang
Runzhe Zhan
Yulin Yuan
Derek F. Wong
Lidia S. Chao
DeLMO
11
22
0
23 Oct 2023
AI-based automated active learning for discovery of hidden dynamic processes: A use case in light microscopy
Nils Friederich
Angelo Jovin Yamachui Sitcheu
Oliver Neumann
Süheyla Eroglu-Kayikçi
Roshan Prizak
Lennart Hilbert
Ralf Mikut
19
2
0
05 Oct 2023
Learning by Self-Explaining
Wolfgang Stammer
Felix Friedrich
David Steinmann
Manuel Brack
Hikaru Shindo
Kristian Kersting
18
7
0
15 Sep 2023
Viewing the process of generating counterfactuals as a source of knowledge: a new approach for explaining classifiers
Vincent Lemaire
Nathan Le Boudec
Victor Guyomard
Franccoise Fessant
CML
8
0
0
08 Sep 2023
Learning to Intervene on Concept Bottlenecks
David Steinmann
Wolfgang Stammer
Felix Friedrich
Kristian Kersting
15
8
0
25 Aug 2023
Explainable Multi-View Deep Networks Methodology for Experimental Physics
Nadav Schneider
Muriel Tzdaka
G. Sturm
Guy Lazovski
G. Bar
G. Oren
R. Gvishi
Gal Oren
15
0
0
16 Aug 2023
FINER: Enhancing State-of-the-art Classifiers with Feature Attribution to Facilitate Security Analysis
Yiling He
Jian Lou
Zhan Qin
Kui Ren
FAtt
AAML
15
7
0
10 Aug 2023
Explainable machine learning to enable high-throughput electrical conductivity optimization and discovery of doped conjugated polymers
Ji Wei Yoon
Adithya Kumar
Priyesh Kumar
K. Hippalgaonkar
J. Senthilnath
Vijila Chellappan
11
4
0
08 Aug 2023
Identifying Explanation Needs of End-users: Applying and Extending the XAI Question Bank
Lars Sipos
Ulrike Schäfer
Katrin Glinka
Claudia Muller-Birn
10
4
0
18 Jul 2023
Evolutionary approaches to explainable machine learning
Ryan Zhou
Ting-Kuei Hu
17
7
0
23 Jun 2023
Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions
N. Rodis
Christos Sardianos
Panagiotis I. Radoglou-Grammatikis
Panagiotis G. Sarigiannidis
Iraklis Varlamis
Georgios Th. Papadopoulos
12
8
0
09 Jun 2023
A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers
Xiaoyan Zhao
Yang Deng
Min Yang
Lingzhi Wang
Rui Zhang
Hong Cheng
W. Lam
Ying Shen
Ruifeng Xu
KELM
19
6
0
03 Jun 2023
Achieving Diversity in Counterfactual Explanations: a Review and Discussion
Thibault Laugel
Adulam Jeyasothy
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
8
9
0
10 May 2023
Towards AI-Architecture Liberty: A Comprehensive Survey on Design and Generation of Virtual Architecture by Deep Learning
Anqi Wang
Jiahua Dong
Lik-Hang Lee
Jiachuan Shen
Pan Hui
3DV
AI4CE
17
0
0
30 Apr 2023
Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams
M. Tavakoli
Rohitash Chandra
Fengrui Tian
Cristián Bravo
19
8
0
21 Apr 2023
A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation
A. Khan
Omkar Chaudhari
Rohitash Chandra
13
163
0
06 Apr 2023
A Brief Review of Explainable Artificial Intelligence in Healthcare
Zahra Sadeghi
R. Alizadehsani
M. Cifci
Samina Kausar
Rizwan Rehman
...
A. Shoeibi
H. Moosaei
Milan Hladík
Saeid Nahavandi
P. Pardalos
6
13
0
04 Apr 2023
Directive Explanations for Monitoring the Risk of Diabetes Onset: Introducing Directive Data-Centric Explanations and Combinations to Support What-If Explorations
Aditya Bhattacharya
Jeroen Ooge
Gregor Stiglic
K. Verbert
11
30
0
21 Feb 2023
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
16
17
0
22 Jan 2023
Deletion and Insertion Tests in Regression Models
Naofumi Hama
Masayoshi Mase
Art B. Owen
11
8
0
25 May 2022
Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions
Shahin Atakishiyev
Mohammad Salameh
Hengshuai Yao
Randy Goebel
17
127
0
21 Dec 2021
A Survey of Knowledge Tracing: Models, Variants, and Applications
Shuanghong Shen
Qi Liu
Zhenya Huang
Yonghe Zheng
Minghao Yin
Minjuan Wang
Enhong Chen
KELM
AI4Ed
14
6
0
06 May 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
159
463
0
31 Dec 2020
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
129
494
0
28 Dec 2020
Semantics of the Black-Box: Can knowledge graphs help make deep learning systems more interpretable and explainable?
Manas Gaur
Keyur Faldu
A. Sheth
29
110
0
16 Oct 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
222
3,658
0
28 Feb 2017
Previous
1
2