ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08230
  4. Cited By
Selective Ensembles for Consistent Predictions

Selective Ensembles for Consistent Predictions

International Conference on Learning Representations (ICLR), 2021
16 November 2021
Emily Black
Klas Leino
Matt Fredrikson
ArXiv (abs)PDFHTML

Papers citing "Selective Ensembles for Consistent Predictions"

19 / 19 papers shown
Representation Consistency for Accurate and Coherent LLM Answer Aggregation
Representation Consistency for Accurate and Coherent LLM Answer Aggregation
Junqi Jiang
Tom Bewley
Salim I. Amoukou
Francesco Leofante
Antonio Rago
Saumitra Mishra
Francesca Toni
190
1
0
18 Jun 2025
VirnyFlow: A Design Space for Responsible Model Development
VirnyFlow: A Design Space for Responsible Model Development
Denys Herasymuk
Nazar Protsiv
Julia Stoyanovich
142
0
0
02 Jun 2025
Be Intentional About Fairness!: Fairness, Size, and Multiplicity in the Rashomon Set
Gordon Dai
Pavan Ravishankar
Rachel Yuan
Daniel B. Neill
Emily Black
187
7
0
28 Jan 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
376
6
0
28 Jan 2025
UniPET-SPK: A Unified Framework for Parameter-Efficient Tuning of Pre-trained Speech Models for Robust Speaker Verification
UniPET-SPK: A Unified Framework for Parameter-Efficient Tuning of Pre-trained Speech Models for Robust Speaker VerificationIEEE Transactions on Audio, Speech, and Language Processing (TASLP), 2025
Mufan Sang
John H. L. Hansen
147
1
0
27 Jan 2025
The Disparate Benefits of Deep Ensembles
The Disparate Benefits of Deep Ensembles
Kajetan Schweighofer
Adrián Arnaiz-Rodríguez
Sepp Hochreiter
Nuria Oliver
FedML
271
3
0
17 Oct 2024
FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic
  Fairness
FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness
Lucas Rosenblatt
R. T. Witter
FaML
301
1
0
02 Oct 2024
Perceptions of the Fairness Impacts of Multiplicity in Machine Learning
Perceptions of the Fairness Impacts of Multiplicity in Machine LearningInternational Conference on Human Factors in Computing Systems (CHI), 2024
Anna P. Meyer
Yea-Seul Kim
Aws Albarghouthi
Loris DÁntoni
FaML
147
2
0
18 Sep 2024
Robust Counterfactual Explanations in Machine Learning: A Survey
Robust Counterfactual Explanations in Machine Learning: A Survey
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
OffRLCML
235
24
0
02 Feb 2024
X Hacking: The Threat of Misguided AutoML
X Hacking: The Threat of Misguided AutoML
Rahul Sharma
Sergey Redyuk
Sumantrak Mukherjee
Andrea Sipka
Eyke Hüllermeier
Sebastian Vollmer
David Selby
437
4
0
16 Jan 2024
Recourse under Model Multiplicity via Argumentative Ensembling
  (Technical Report)
Recourse under Model Multiplicity via Argumentative Ensembling (Technical Report)
Junqi Jiang
Antonio Rago
Francesco Leofante
Francesca Toni
305
14
0
22 Dec 2023
Arbitrariness Lies Beyond the Fairness-Accuracy Frontier
Arbitrariness Lies Beyond the Fairness-Accuracy Frontier
Carol Xuan Long
Hsiang Hsu
Wael Alghamdi
Flavio du Pin Calmon
FaML
216
10
0
15 Jun 2023
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
On Minimizing the Impact of Dataset Shifts on Actionable ExplanationsConference on Uncertainty in Artificial Intelligence (UAI), 2023
Anna P. Meyer
Dan Ley
Suraj Srinivas
Himabindu Lakkaraju
FAtt
196
7
0
11 Jun 2023
Consistent Explanations in the Face of Model Indeterminacy via
  Ensembling
Consistent Explanations in the Face of Model Indeterminacy via Ensembling
Dan Ley
Leonard Tang
Matthew Nazari
Hongjin Lin
Suraj Srinivas
Himabindu Lakkaraju
204
2
0
09 Jun 2023
The Dataset Multiplicity Problem: How Unreliable Data Impacts
  Predictions
The Dataset Multiplicity Problem: How Unreliable Data Impacts PredictionsConference on Fairness, Accountability and Transparency (FAccT), 2023
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
247
20
0
20 Apr 2023
Arbitrary Decisions are a Hidden Cost of Differentially Private Training
Arbitrary Decisions are a Hidden Cost of Differentially Private TrainingConference on Fairness, Accountability and Transparency (FAccT), 2023
B. Kulynych
Hsiang Hsu
Carmela Troncoso
Flavio du Pin Calmon
333
22
0
28 Feb 2023
Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
  Audit Models
Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax Audit ModelsConference on Fairness, Accountability and Transparency (FAccT), 2022
Emily Black
Hadi Elzayn
Alexandra Chouldechova
Jacob Goldin
Mark A. Lemley
MLAU
119
32
0
20 Jun 2022
Predictive Multiplicity in Probabilistic Classification
Predictive Multiplicity in Probabilistic ClassificationAAAI Conference on Artificial Intelligence (AAAI), 2022
J. Watson-Daniels
David C. Parkes
Berk Ustun
288
47
0
02 Jun 2022
Reliable Visual Question Answering: Abstain Rather Than Answer
  Incorrectly
Reliable Visual Question Answering: Abstain Rather Than Answer IncorrectlyEuropean Conference on Computer Vision (ECCV), 2022
Spencer Whitehead
Suzanne Petryk
Vedaad Shakib
Joseph E. Gonzalez
Trevor Darrell
Anna Rohrbach
Marcus Rohrbach
374
74
0
28 Apr 2022
1