ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08481
  4. Cited By
PySINDy: A comprehensive Python package for robust sparse system
  identification

PySINDy: A comprehensive Python package for robust sparse system identification

12 November 2021
A. Kaptanoglu
Brian M. de Silva
Urban Fasel
Kadierdan Kaheman
Andy J. Goldschmidt
Jared L. Callaham
Charles B. Delahunt
Zachary G. Nicolaou
Kathleen P. Champion
Jean-Christophe Loiseau
J. Nathan Kutz
Steven L. Brunton
    AI4CE
ArXivPDFHTML

Papers citing "PySINDy: A comprehensive Python package for robust sparse system identification"

14 / 14 papers shown
Title
No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
Krzysztof Kacprzyk
M. Schaar
101
0
0
30 Jan 2025
Machine learning for cerebral blood vessels' malformations
Machine learning for cerebral blood vessels' malformations
Irem Topal
Alexander Cherevko
Yuri Bugay
Maxim Shishlenin
Jean Barbier
Deniz Eroglu
Édgar Roldán
Roman Belousov
67
0
0
25 Nov 2024
Constrained Exploration via Reflected Replica Exchange Stochastic
  Gradient Langevin Dynamics
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
33
4
0
13 May 2024
Detach-ROCKET: Sequential feature selection for time series
  classification with random convolutional kernels
Detach-ROCKET: Sequential feature selection for time series classification with random convolutional kernels
Gonzalo Uribarri
Federico Barone
A. Ansuini
Erik Fransén
AI4TS
32
6
0
25 Sep 2023
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman
  Operator
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator
Shaowu Pan
E. Kaiser
Brian M. de Silva
J. Nathan Kutz
Steven L. Brunton
19
8
0
22 Jun 2023
Machine Learning for Partial Differential Equations
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
29
20
0
30 Mar 2023
Zyxin is all you need: machine learning adherent cell mechanics
Zyxin is all you need: machine learning adherent cell mechanics
Matthew S. Schmitt
Jonathan Colen
S. Sala
J. Devany
Shailaja Seetharaman
M. Gardel
Patrick W. Oakes
Vincenzo Vitelli
AI4CE
14
9
0
01 Mar 2023
SIMPLE: A Gradient Estimator for $k$-Subset Sampling
SIMPLE: A Gradient Estimator for kkk-Subset Sampling
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Guy Van den Broeck
BDL
26
24
0
04 Oct 2022
Interpretable Polynomial Neural Ordinary Differential Equations
Interpretable Polynomial Neural Ordinary Differential Equations
Colby Fronk
Linda R. Petzold
27
26
0
09 Aug 2022
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Dimitris Bertsimas
Wes Gurnee
AI4CE
23
43
0
01 Jun 2022
Learning continuous models for continuous physics
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
18
32
0
17 Feb 2022
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
29
82
0
13 Jan 2022
A toolkit for data-driven discovery of governing equations in high-noise
  regimes
A toolkit for data-driven discovery of governing equations in high-noise regimes
Charles B. Delahunt
J. Nathan Kutz
30
18
0
08 Nov 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
30
24
0
11 Sep 2021
1