Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.10510
Cited By
Bayesian Learning via Neural Schrödinger-Föllmer Flows
20 November 2021
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Learning via Neural Schrödinger-Föllmer Flows"
10 / 10 papers shown
Title
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
51
0
0
03 Jan 2025
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
29
2
0
25 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
41
0
0
08 Oct 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
45
3
0
31 May 2024
A framework for conditional diffusion modelling with applications in motif scaffolding for protein design
Kieran Didi
Francisco Vargas
Simon V. Mathis
Vincent Dutordoir
Emile Mathieu
U. J. Komorowska
Pietro Lió
DiffM
25
13
0
14 Dec 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
24
52
0
03 Jul 2023
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
172
160
0
21 Oct 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
127
48
0
20 Oct 2020
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
191
498
0
11 Jun 2018
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1