ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.10510
  4. Cited By
Bayesian Learning via Neural Schrödinger-Föllmer Flows

Bayesian Learning via Neural Schrödinger-Föllmer Flows

20 November 2021
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
    BDL
ArXivPDFHTML

Papers citing "Bayesian Learning via Neural Schrödinger-Föllmer Flows"

10 / 10 papers shown
Title
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
51
0
0
03 Jan 2025
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
29
2
0
25 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
41
0
0
08 Oct 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
45
3
0
31 May 2024
A framework for conditional diffusion modelling with applications in
  motif scaffolding for protein design
A framework for conditional diffusion modelling with applications in motif scaffolding for protein design
Kieran Didi
Francisco Vargas
Simon V. Mathis
Vincent Dutordoir
Emile Mathieu
U. J. Komorowska
Pietro Lió
DiffM
25
13
0
14 Dec 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
24
52
0
03 Jul 2023
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs
  Theory
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
172
160
0
21 Oct 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
127
48
0
20 Oct 2020
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
191
498
0
11 Jun 2018
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1