ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12506
12
22

Generalized Normalizing Flows via Markov Chains

24 November 2021
Paul Hagemann
J. Hertrich
Gabriele Steidl
    BDL
    DiffM
    AI4CE
ArXivPDFHTML
Abstract

Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This chapter provides a unified framework to handle these approaches via Markov chains. We consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables us to couple both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. Our framework establishes a useful mathematical tool to combine the various approaches.

View on arXiv
Comments on this paper