ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12506
  4. Cited By
Generalized Normalizing Flows via Markov Chains

Generalized Normalizing Flows via Markov Chains

24 November 2021
Paul Hagemann
J. Hertrich
Gabriele Steidl
    BDL
    DiffM
    AI4CE
ArXivPDFHTML

Papers citing "Generalized Normalizing Flows via Markov Chains"

20 / 20 papers shown
Title
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
56
3
0
10 Jan 2025
S-Diff: An Anisotropic Diffusion Model for Collaborative Filtering in Spectral Domain
Rui Xia
Yanhua Cheng
Yongxiang Tang
Xiaocheng Liu
Xialong Liu
Lisong Wang
Peng Jiang
DiffM
28
0
0
03 Jan 2025
Conditional Wasserstein Distances with Applications in Bayesian OT Flow
  Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
38
9
0
27 Mar 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
14
0
0
05 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
19
3
0
25 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
19
5
0
27 Dec 2023
Y-Diagonal Couplings: Approximating Posteriors with Conditional
  Wasserstein Distances
Y-Diagonal Couplings: Approximating Posteriors with Conditional Wasserstein Distances
Jannis Chemseddine
Paul Hagemann
Christian Wald
27
3
0
20 Oct 2023
Generalised Diffusion Probabilistic Scale-Spaces
Generalised Diffusion Probabilistic Scale-Spaces
Pascal Peter
DiffM
22
0
0
15 Sep 2023
Variations and Relaxations of Normalizing Flows
Variations and Relaxations of Normalizing Flows
Keegan Kelly
Lorena Piedras
Sukrit Rao
David Samuel Roth
BDL
25
0
0
08 Sep 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
23
23
0
19 May 2023
Refining Amortized Posterior Approximations using Gradient-Based Summary
  Statistics
Refining Amortized Posterior Approximations using Gradient-Based Summary Statistics
Rafael Orozco
Ali Siahkoohi
M. Louboutin
Felix J. Herrmann
10
3
0
15 May 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging
  Inverse Problems
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
23
3
0
17 Apr 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
16
9
0
28 Mar 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
13
6
0
27 Mar 2023
Generalised Scale-Space Properties for Probabilistic Diffusion Models
Generalised Scale-Space Properties for Probabilistic Diffusion Models
Pascal Peter
DiffM
21
1
0
14 Mar 2023
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models
  for Image Generation
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation
Paul Hagemann
Sophie Mildenberger
Lars Ruthotto
Gabriele Steidl
Ni Yang
DiffM
53
20
0
08 Mar 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
22
13
0
27 Jan 2023
Proximal Residual Flows for Bayesian Inverse Problems
Proximal Residual Flows for Bayesian Inverse Problems
J. Hertrich
BDL
TPM
10
4
0
30 Nov 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
19
15
0
20 Jan 2022
Invertible Neural Networks versus MCMC for Posterior Reconstruction in
  Grazing Incidence X-Ray Fluorescence
Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
58
16
0
05 Feb 2021
1