ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15000
  4. Cited By
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable
  Prototypes

Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes

29 November 2021
Jonathan Donnelly
A. Barnett
Chaofan Chen
    3DH
ArXivPDFHTML

Papers citing "Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes"

21 / 21 papers shown
Title
Interpretable Affordance Detection on 3D Point Clouds with Probabilistic Prototypes
Interpretable Affordance Detection on 3D Point Clouds with Probabilistic Prototypes
M. Li
Korbinian Franz Rudolf
Nils Blank
Rudolf Lioutikov
3DPC
27
0
0
25 Apr 2025
Can Masked Autoencoders Also Listen to Birds?
Can Masked Autoencoders Also Listen to Birds?
Lukas Rauch
Ilyass Moummad
René Heinrich
Alexis Joly
Bernhard Sick
Christoph Scholz
27
0
0
17 Apr 2025
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
52
0
0
14 Apr 2025
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
44
0
0
24 Feb 2025
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
Shreyash Arya
Sukrut Rao
Moritz Bohle
Bernt Schiele
68
2
0
28 Jan 2025
COMIX: Compositional Explanations using Prototypes
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
67
0
0
10 Jan 2025
Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation
Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation
Chong Wang
Fengbei Liu
Yuanhong Chen
Helen Frazer
Gustavo Carneiro
27
2
0
07 Nov 2024
InfoDisent: Explainability of Image Classification Models by Information Disentanglement
InfoDisent: Explainability of Image Classification Models by Information Disentanglement
Łukasz Struski
Dawid Rymarczyk
Jacek Tabor
46
0
0
16 Sep 2024
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Hugo Porta
Emanuele Dalsasso
Diego Marcos
D. Tuia
93
0
0
14 Sep 2024
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and
  Beyond: A Survey
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey
Rokas Gipiškis
Chun-Wei Tsai
Olga Kurasova
49
5
0
02 May 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
49
4
0
28 Dec 2023
Leveraging Habitat Information for Fine-grained Bird Identification
Leveraging Habitat Information for Fine-grained Bird Identification
Tin Nguyen
Anh Nguyen
Anh Nguyen
VLM
28
0
0
22 Dec 2023
Prototypical Self-Explainable Models Without Re-training
Prototypical Self-Explainable Models Without Re-training
Srishti Gautam
Ahcène Boubekki
Marina M.-C. Höhne
Michael C. Kampffmeyer
21
2
0
13 Dec 2023
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Chong Wang
Yuanhong Chen
Fengbei Liu
Yuyuan Liu
Davis J. McCarthy
Helen Frazer
Gustavo Carneiro
16
1
0
30 Nov 2023
MProtoNet: A Case-Based Interpretable Model for Brain Tumor
  Classification with 3D Multi-parametric Magnetic Resonance Imaging
MProtoNet: A Case-Based Interpretable Model for Brain Tumor Classification with 3D Multi-parametric Magnetic Resonance Imaging
Yuanyuan Wei
Roger Tam
Xiaoying Tang
MedIm
14
12
0
13 Apr 2023
ICICLE: Interpretable Class Incremental Continual Learning
ICICLE: Interpretable Class Incremental Continual Learning
Dawid Rymarczyk
Joost van de Weijer
Bartosz Zieliñski
Bartlomiej Twardowski
CLL
16
28
0
14 Mar 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
8
10
0
06 Feb 2023
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Pedro C. Neto
Tiago B. Gonccalves
João Ribeiro Pinto
W. Silva
Ana F. Sequeira
Arun Ross
Jaime S. Cardoso
XAI
26
12
0
19 Aug 2022
Learnable Visual Words for Interpretable Image Recognition
Learnable Visual Words for Interpretable Image Recognition
Wenxi Xiao
Zhengming Ding
Hongfu Liu
VLM
8
2
0
22 May 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
112
0
06 Dec 2021
Interpretable Mammographic Image Classification using Case-Based
  Reasoning and Deep Learning
Interpretable Mammographic Image Classification using Case-Based Reasoning and Deep Learning
A. Barnett
F. Schwartz
Chaofan Tao
Chaofan Chen
Yinhao Ren
J. Lo
Cynthia Rudin
62
21
0
12 Jul 2021
1