ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15430
  4. Cited By
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration

The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration

30 November 2021
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
    UQCV
ArXivPDFHTML

Papers citing "The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration"

4 / 54 papers shown
Title
Maximum Entropy on Erroneous Predictions (MEEP): Improving model
  calibration for medical image segmentation
Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
11
15
0
22 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
19
2
0
02 Dec 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
9,134
0
06 Jun 2015
Previous
12