ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00713
  4. Cited By
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of
  Data with Complex Predictive Models under Uncertainty

hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty

1 December 2021
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
ArXivPDFHTML

Papers citing "hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty"

8 / 8 papers shown
Title
Non-parametric Inference for Diffusion Processes: A Computational
  Approach via Bayesian Inversion for PDEs
Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs
Maximilian Kruse
Sebastian Krumscheid
16
0
0
04 Nov 2024
Distribution learning via neural differential equations: a nonparametric
  statistical perspective
Distribution learning via neural differential equations: a nonparametric statistical perspective
Youssef Marzouk
Zhi Ren
Sven Wang
Jakob Zech
16
11
0
03 Sep 2023
Principal Feature Detection via $Φ$-Sobolev Inequalities
Principal Feature Detection via ΦΦΦ-Sobolev Inequalities
Matthew T.C. Li
Youssef Marzouk
O. Zahm
8
8
0
10 May 2023
Infinite-Dimensional Diffusion Models
Infinite-Dimensional Diffusion Models
Jakiw Pidstrigach
Youssef Marzouk
Sebastian Reich
Sven Wang
29
10
0
20 Feb 2023
Further analysis of multilevel Stein variational gradient descent with
  an application to the Bayesian inference of glacier ice models
Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models
Terrence Alsup
Tucker Hartland
Benjamin Peherstorfer
N. Petra
11
1
0
06 Dec 2022
Derivative-Informed Neural Operator: An Efficient Framework for
  High-Dimensional Parametric Derivative Learning
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
17
39
0
21 Jun 2022
A gradient-free subspace-adjusting ensemble sampler for
  infinite-dimensional Bayesian inverse problems
A gradient-free subspace-adjusting ensemble sampler for infinite-dimensional Bayesian inverse problems
Matthew M. Dunlop
G. Stadler
BDL
6
6
0
22 Feb 2022
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,260
0
09 Jun 2012
1