ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00778
  4. Cited By
Quantum advantage in learning from experiments

Quantum advantage in learning from experiments

1 December 2021
Hsin-Yuan Huang
Michael Broughton
Jordan S. Cotler
Sitan Chen
Jingkai Li
Masoud Mohseni
Hartmut Neven
Ryan Babbush
R. Kueng
J. Preskill
Jarrod R. McClean
ArXivPDFHTML

Papers citing "Quantum advantage in learning from experiments"

17 / 17 papers shown
Title
Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources
Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources
Siddhant Dutta
Iago Leal de Freitas
Pedro Maciel Xavier
Claudio Miceli de Farias
David E. Bernal Neira
AI4CE
FedML
109
0
0
23 Nov 2024
Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows
Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows
Hong-Ye Hu
Andi Gu
Swarnadeep Majumder
Hang Ren
Yipei Zhang
Derek S. Wang
Yi-Zhuang You
Zlatko K. Minev
S. Yelin
Alireza Seif
41
24
0
27 Feb 2024
Pseudorandom unitaries are neither real nor sparse nor noise-robust
Pseudorandom unitaries are neither real nor sparse nor noise-robust
Tobias Haug
Kishor Bharti
D. E. Koh
46
22
0
20 Jun 2023
Multi-Armed Bandits and Quantum Channel Oracles
Multi-Armed Bandits and Quantum Channel Oracles
Simon Buchholz
Jonas M. Kubler
Bernhard Schölkopf
58
2
0
20 Jan 2023
Revisiting dequantization and quantum advantage in learning tasks
Revisiting dequantization and quantum advantage in learning tasks
Jordan S. Cotler
Hsin-Yuan Huang
Jarrod R. McClean
63
31
0
01 Dec 2021
Exponential separations between learning with and without quantum memory
Exponential separations between learning with and without quantum memory
Sitan Chen
Jordan S. Cotler
Hsin-Yuan Huang
Jingkai Li
57
113
0
10 Nov 2021
A Hierarchy for Replica Quantum Advantage
A Hierarchy for Replica Quantum Advantage
Sitan Chen
Jordan S. Cotler
Hsin-Yuan Huang
Jingkai Li
69
22
0
10 Nov 2021
Provably efficient machine learning for quantum many-body problems
Provably efficient machine learning for quantum many-body problems
Hsin-Yuan Huang
R. Kueng
Giacomo Torlai
Victor V. Albert
J. Preskill
AI4CE
89
233
0
23 Jun 2021
Information-theoretic bounds on quantum advantage in machine learning
Information-theoretic bounds on quantum advantage in machine learning
Hsin-Yuan Huang
R. Kueng
J. Preskill
80
218
0
07 Jan 2021
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
Michael Broughton
Guillaume Verdon
Trevor McCourt
Antonio J. Martinez
Jae Hyeon Yoo
...
Sergio Boixo
Dave Bacon
Alan K. Ho
Hartmut Neven
Masoud Mohseni
VLM
AI4CE
36
206
0
06 Mar 2020
Predicting Many Properties of a Quantum System from Very Few
  Measurements
Predicting Many Properties of a Quantum System from Very Few Measurements
Hsin-Yuan Huang
R. Kueng
J. Preskill
38
1,092
0
18 Feb 2020
Sampling-based sublinear low-rank matrix arithmetic framework for
  dequantizing quantum machine learning
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning
Nai-Hui Chia
A. Gilyén
Tongyang Li
Han-Hsuan Lin
Ewin Tang
Cong Wang
41
135
0
14 Oct 2019
Quantum principal component analysis only achieves an exponential
  speedup because of its state preparation assumptions
Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions
Ewin Tang
31
107
0
31 Oct 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
519
129,831
0
12 Jun 2017
Quantum Machine Learning
Quantum Machine Learning
Jacob Biamonte
P. Wittek
Nicola Pancotti
Patrick Rebentrost
N. Wiebe
S. Lloyd
50
2,004
0
28 Nov 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
363
12,662
0
11 Dec 2014
1