ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.01522
  4. Cited By
Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
  for Zero-shot and Few-shot Tasks

Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks

2 December 2021
Xizhou Zhu
Jinguo Zhu
Hao Li
Xiaoshi Wu
Xiaogang Wang
Hongsheng Li
Xiaohua Wang
Jifeng Dai
ArXivPDFHTML

Papers citing "Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks"

17 / 117 papers shown
Title
Backbone is All Your Need: A Simplified Architecture for Visual Object
  Tracking
Backbone is All Your Need: A Simplified Architecture for Visual Object Tracking
Boyu Chen
Peixia Li
Lei Bai
Leixian Qiao
Qiuhong Shen
Bo-wen Li
Weihao Gan
Wei Wu
Wanli Ouyang
ViT
VOT
20
182
0
10 Mar 2022
Geodesic Multi-Modal Mixup for Robust Fine-Tuning
Geodesic Multi-Modal Mixup for Robust Fine-Tuning
Changdae Oh
Junhyuk So
Hoyoon Byun
Yongtaek Lim
Minchul Shin
Jong-June Jeon
Kyungwoo Song
21
24
0
08 Mar 2022
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple
  Sequence-to-Sequence Learning Framework
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
Peng Wang
An Yang
Rui Men
Junyang Lin
Shuai Bai
Zhikang Li
Jianxin Ma
Chang Zhou
Jingren Zhou
Hongxia Yang
MLLM
ObjD
28
848
0
07 Feb 2022
Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language
  Modeling
Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling
Renrui Zhang
Rongyao Fang
Wei Zhang
Peng Gao
Kunchang Li
Jifeng Dai
Yu Qiao
Hongsheng Li
VLM
184
384
0
06 Nov 2021
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
780
0
14 Oct 2021
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
322
2,249
0
02 Sep 2021
VidTr: Video Transformer Without Convolutions
VidTr: Video Transformer Without Convolutions
Yanyi Zhang
Xinyu Li
Chunhui Liu
Bing Shuai
Yi Zhu
Biagio Brattoli
Hao Chen
I. Marsic
Joseph Tighe
ViT
127
193
0
23 Apr 2021
VATT: Transformers for Multimodal Self-Supervised Learning from Raw
  Video, Audio and Text
VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text
Hassan Akbari
Liangzhe Yuan
Rui Qian
Wei-Hong Chuang
Shih-Fu Chang
Yin Cui
Boqing Gong
ViT
231
573
0
22 Apr 2021
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip
  Retrieval
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval
Huaishao Luo
Lei Ji
Ming Zhong
Yang Chen
Wen Lei
Nan Duan
Tianrui Li
CLIP
VLM
303
771
0
18 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
263
3,538
0
24 Feb 2021
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize
  Long-Tail Visual Concepts
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts
Soravit Changpinyo
P. Sharma
Nan Ding
Radu Soricut
VLM
273
1,077
0
17 Feb 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
278
1,939
0
09 Feb 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,898
0
31 Dec 2020
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
235
1,444
0
18 Mar 2020
Unified Vision-Language Pre-Training for Image Captioning and VQA
Unified Vision-Language Pre-Training for Image Captioning and VQA
Luowei Zhou
Hamid Palangi
Lei Zhang
Houdong Hu
Jason J. Corso
Jianfeng Gao
MLLM
VLM
250
922
0
24 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
Previous
123