Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2112.03245
Cited By
GAM Changer: Editing Generalized Additive Models with Interactive Visualization
6 December 2021
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
Jennifer Wortman Vaughan
R. Caruana
KELM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"GAM Changer: Editing Generalized Additive Models with Interactive Visualization"
18 / 18 papers shown
Interpretable Clinical Classification with Kolgomorov-Arnold Networks
Alejandro Almodóvar
Patricia A. Apellániz
Alba Garrido
Fernando Fernández-Salvador
Santiago Zazo
J. Parras
174
1
0
20 Sep 2025
Transparent and Fair Profiling in Employment Services: Evidence from Switzerland
Tim Räz
117
0
0
15 Sep 2025
VAR: Visual Analysis for Rashomon Set of Machine Learning Models' Performance
Yuanzhe Jin
79
0
0
30 Jul 2025
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
International Conference on Human Factors in Computing Systems (CHI), 2024
Zana Buçinca
S. Swaroop
Amanda E. Paluch
Finale Doshi-Velez
Krzysztof Z. Gajos
298
10
0
05 Oct 2024
Amazing Things Come From Having Many Good Models
Cynthia Rudin
Chudi Zhong
Lesia Semenova
Margo Seltzer
Ronald E. Parr
Jiachang Liu
Srikar Katta
Jon Donnelly
Harry Chen
Zachery Boner
272
52
0
05 Jul 2024
LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs
Ben Lengerich
Sebastian Bordt
Harsha Nori
M. Nunnally
Y. Aphinyanaphongs
Manolis Kellis
Rich Caruana
202
11
0
02 Aug 2023
FeedbackLogs: Recording and Incorporating Stakeholder Feedback into Machine Learning Pipelines
Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO), 2023
Matthew Barker
Emma Kallina
D. Ashok
Katherine M. Collins
Ashley Casovan
Adrian Weller
Ameet Talwalkar
Valerie Chen
Umang Bhatt
188
11
0
28 Jul 2023
Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning Help?
ACM Conference on Health, Inference, and Learning (CHIL), 2023
Zhi Chen
S. Tan
Urszula Chajewska
Cynthia Rudin
Rich Caruana
190
16
0
23 Apr 2023
Exploring and Interacting with the Set of Good Sparse Generalized Additive Models
Neural Information Processing Systems (NeurIPS), 2023
Chudi Zhong
Zhi Chen
Jiachang Liu
Margo Seltzer
Cynthia Rudin
319
24
0
28 Mar 2023
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization
Visual .. (VISUAL), 2022
Zijie J. Wang
Chudi Zhong
Rui Xin
Takuya Takagi
Zhi Chen
Duen Horng Chau
Cynthia Rudin
Margo Seltzer
137
24
0
19 Sep 2022
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Knowledge Discovery and Data Mining (KDD), 2022
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
J. W. Vaughan
R. Caruana
KELM
251
32
0
30 Jun 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Patterns (Patterns), 2022
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
222
15
0
13 May 2022
NOVA: A Practical Method for Creating Notebook-Ready Visual Analytics
Zijie J. Wang
David Munechika
Seongmin Lee
Duen Horng Chau
GNN
263
10
0
08 May 2022
Data-Efficient and Interpretable Tabular Anomaly Detection
Knowledge Discovery and Data Mining (KDD), 2022
C. Chang
Chang Jo Kim
Sercan O. Arik
Madeleine Udell
Tomas Pfister
108
20
0
03 Mar 2022
StickyLand: Breaking the Linear Presentation of Computational Notebooks
Zijie J. Wang
Katie Dai
W. K. Edwards
105
32
0
22 Feb 2022
A Unified and Fast Interpretable Model for Predictive Analytics
Expert systems with applications (ESWA), 2021
Yunan Zhu
Rui Ding
Tianchi Qiao
Zhitao Zou
Shi Han
Dongmei Zhang
100
4
0
16 Nov 2021
LIMEADE: From AI Explanations to Advice Taking
Benjamin Charles Germain Lee
Doug Downey
Kyle Lo
Daniel S. Weld
323
9
0
09 Mar 2020
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
2.5K
19,701
0
16 Feb 2016
1