Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.04417
Cited By
What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods
6 December 2021
Julien Colin
Thomas Fel
Rémi Cadène
Thomas Serre
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods"
18 / 18 papers shown
Title
Towards Robust and Generalizable Gerchberg Saxton based Physics Inspired Neural Networks for Computer Generated Holography: A Sensitivity Analysis Framework
Ankit Amrutkar
Björn Kampa
Volkmar Schulz
Johannes Stegmaier
Markus Rothermel
Dorit Merhof
16
0
0
30 Apr 2025
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Itay Benou
Tammy Riklin-Raviv
59
0
0
27 Feb 2025
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
97
7
0
06 Feb 2025
Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
Tobias Leemann
Alina Fastowski
Felix Pfeiffer
Gjergji Kasneci
51
4
0
10 Jan 2025
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Hugo Porta
Emanuele Dalsasso
Diego Marcos
D. Tuia
87
0
0
14 Sep 2024
On the Evaluation Consistency of Attribution-based Explanations
Jiarui Duan
Haoling Li
Haofei Zhang
Hao Jiang
Mengqi Xue
Li Sun
Mingli Song
Jie Song
XAI
26
0
0
28 Jul 2024
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
A. Newson
Florence dÁlché-Buc
SSL
51
1
0
01 Jul 2024
Inpainting the Gaps: A Novel Framework for Evaluating Explanation Methods in Vision Transformers
Lokesh Badisa
Sumohana S. Channappayya
32
0
0
17 Jun 2024
Graphical Perception of Saliency-based Model Explanations
Yayan Zhao
Mingwei Li
Matthew Berger
XAI
FAtt
36
2
0
11 Jun 2024
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey
Rokas Gipiškis
Chun-Wei Tsai
Olga Kurasova
46
5
0
02 May 2024
The Duet of Representations and How Explanations Exacerbate It
Charles Wan
Rodrigo Belo
Leid Zejnilovic
Susana Lavado
CML
FAtt
14
1
0
13 Feb 2024
ALMANACS: A Simulatability Benchmark for Language Model Explainability
Edmund Mills
Shiye Su
Stuart J. Russell
Scott Emmons
35
7
0
20 Dec 2023
Deep Natural Language Feature Learning for Interpretable Prediction
Felipe Urrutia
Cristian Buc
Valentin Barriere
8
1
0
09 Nov 2023
FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
AAML
22
32
0
11 Aug 2023
Harmonizing the object recognition strategies of deep neural networks with humans
Thomas Fel
Ivan Felipe
Drew Linsley
Thomas Serre
21
71
0
08 Nov 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
112
0
06 Dec 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
112
57
0
07 Nov 2021
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
1