ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.05746
  4. Cited By
On Causally Disentangled Representations

On Causally Disentangled Representations

10 December 2021
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
    OOD
    CML
ArXivPDFHTML

Papers citing "On Causally Disentangled Representations"

18 / 18 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
16
0
0
25 Oct 2024
Measuring Orthogonality in Representations of Generative Models
Measuring Orthogonality in Representations of Generative Models
Robin Geyer
Alessandro Torcinovich
João B. S. Carvalho
Alexander Meyer
Joachim M. Buhmann
CML
27
0
0
04 Jul 2024
Causal Prototype-inspired Contrast Adaptation for Unsupervised Domain
  Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery
Causal Prototype-inspired Contrast Adaptation for Unsupervised Domain Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery
Jingru Zhu
Ya Guo
Geng Sun
Liang Hong
Jie Chen
30
3
0
06 Mar 2024
C-Disentanglement: Discovering Causally-Independent Generative Factors
  under an Inductive Bias of Confounder
C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder
Xiaoyu Liu
Jiaxin Yuan
Bang An
Yuancheng Xu
Yifan Yang
Furong Huang
CML
21
7
0
26 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
31
7
0
17 Oct 2023
Interpretability is in the Mind of the Beholder: A Causal Framework for
  Human-interpretable Representation Learning
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation Learning
Emanuele Marconato
Andrea Passerini
Stefano Teso
19
13
0
14 Sep 2023
On Counterfactual Data Augmentation Under Confounding
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
28
0
0
29 May 2023
Causally Disentangled Generative Variational AutoEncoder
Causally Disentangled Generative Variational AutoEncoder
SeungHwan An
Kyungwoo Song
Jong-June Jeon
OOD
CoGe
DRL
CML
13
4
0
23 Feb 2023
Entity Aware Modelling: A Survey
Entity Aware Modelling: A Survey
Rahul Ghosh
Haoyu Yang
A. Khandelwal
Erhu He
Arvind Renganathan
Somya Sharma
X. Jia
Vipin Kumar
28
7
0
16 Feb 2023
A Review of the Role of Causality in Developing Trustworthy AI Systems
A Review of the Role of Causality in Developing Trustworthy AI Systems
Niloy Ganguly
Dren Fazlija
Maryam Badar
M. Fisichella
Sandipan Sikdar
...
Koustav Rudra
Manolis Koubarakis
Gourab K. Patro
W. Z. E. Amri
Wolfgang Nejdl
CML
39
23
0
14 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
50
11
0
29 Jan 2023
Finding Differences Between Transformers and ConvNets Using
  Counterfactual Simulation Testing
Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing
Nataniel Ruiz
Sarah Adel Bargal
Cihang Xie
Kate Saenko
Stan Sclaroff
ViT
21
5
0
29 Nov 2022
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
24
77
0
21 Nov 2022
Counterfactual Generation Under Confounding
Counterfactual Generation Under Confounding
Abbavaram Gowtham Reddy
Saloni Dash
Amit Sharma
V. Balasubramanian
CML
29
2
0
22 Oct 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
98
64
0
31 May 2022
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
29
515
0
31 Aug 2021
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
84
72
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
1