ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09992
  4. Cited By
Weisfeiler and Leman go Machine Learning: The Story so far

Weisfeiler and Leman go Machine Learning: The Story so far

18 December 2021
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
    GNN
ArXivPDFHTML

Papers citing "Weisfeiler and Leman go Machine Learning: The Story so far"

21 / 21 papers shown
Title
Graph Positional Encoding via Random Feature Propagation
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
14
16
0
06 Mar 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
19
63
0
30 Jan 2023
On the Ability of Graph Neural Networks to Model Interactions Between
  Vertices
On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin
Tom Verbin
Nadav Cohen
14
10
0
29 Nov 2022
Beyond 1-WL with Local Ego-Network Encodings
Beyond 1-WL with Local Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
13
5
0
27 Nov 2022
Exponentially Improving the Complexity of Simulating the
  Weisfeiler-Lehman Test with Graph Neural Networks
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
30
21
0
06 Nov 2022
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Franka Bause
Nils M. Kriege
CLL
8
6
0
19 Sep 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
73
37
0
30 May 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
23
39
0
25 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
20
138
0
25 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
120
78
0
01 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
44
89
0
25 Feb 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond
  Message Passing
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
73
27
0
17 Feb 2021
The expressive power of kth-order invariant graph networks
The expressive power of kth-order invariant graph networks
Floris Geerts
123
37
0
23 Jul 2020
Graph Homomorphism Convolution
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
58
39
0
03 May 2020
Universal Equivariant Multilayer Perceptrons
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
90
48
0
07 Feb 2020
Convolutional Neural Network Architectures for Signals Supported on
  Graphs
Convolutional Neural Network Architectures for Signals Supported on Graphs
Fernando Gama
A. Marques
G. Leus
Alejandro Ribeiro
120
284
0
01 May 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
157
1,748
0
02 Mar 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
13,886
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1