ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11255
  4. Cited By
Mind the Gap! A Study on the Transferability of Virtual vs
  Physical-world Testing of Autonomous Driving Systems

Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems

21 December 2021
Andrea Stocco
Brian Pulfer
Paolo Tonella
ArXivPDFHTML

Papers citing "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

13 / 13 papers shown
Title
On the Need for a Statistical Foundation in Scenario-Based Testing of Autonomous Vehicles
On the Need for a Statistical Foundation in Scenario-Based Testing of Autonomous Vehicles
Xingyu Zhao
Robab Aghazadeh-Chakherlou
Chih-Hong Cheng
Peter Popov
L. Strigini
24
0
0
04 May 2025
Behavioral Cloning Models Reality Check for Autonomous Driving
Behavioral Cloning Models Reality Check for Autonomous Driving
M. Yildirim
Barkin Dagda
Vinal Asodia
Saber Fallah
OffRL
19
1
0
11 Sep 2024
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
Ruben Grewal
Paolo Tonella
Andrea Stocco
40
10
0
29 Apr 2024
Realistic pedestrian behaviour in the CARLA simulator using VR and mocap
Realistic pedestrian behaviour in the CARLA simulator using VR and mocap
Sergio Martín Serrano
David Fernández Llorca
Iván García Daza
Miguel Ángel Sotelo
19
5
0
08 Sep 2023
Testing of Deep Reinforcement Learning Agents with Surrogate Models
Testing of Deep Reinforcement Learning Agents with Surrogate Models
Matteo Biagiola
Paolo Tonella
23
19
0
22 May 2023
Digital twin in virtual reality for human-vehicle interactions in the
  context of autonomous driving
Digital twin in virtual reality for human-vehicle interactions in the context of autonomous driving
Sergio Martín Serrano
R. Izquierdo
Iván García Daza
Miguel Ángel Sotelo
David Fernández Llorca
30
6
0
20 Mar 2023
Generative AI-empowered Simulation for Autonomous Driving in Vehicular
  Mixed Reality Metaverses
Generative AI-empowered Simulation for Autonomous Driving in Vehicular Mixed Reality Metaverses
Minrui Xu
Dusit Niyato
Junlong Chen
Hongliang Zhang
Jiawen Kang
Zehui Xiong
Shiwen Mao
Zhu Han
25
73
0
16 Feb 2023
AmbieGen: A Search-based Framework for Autonomous Systems Testing
AmbieGen: A Search-based Framework for Autonomous Systems Testing
D. Humeniuk
Foutse Khomh
G. Antoniol
22
13
0
01 Jan 2023
TUM autonomous motorsport: An autonomous racing software for the Indy
  Autonomous Challenge
TUM autonomous motorsport: An autonomous racing software for the Indy Autonomous Challenge
Johannes Betz
Tobias Betz
F. Fent
Maximilian Geisslinger
Alexander Heilmeier
...
Florian Sauerbeck
Tim Stahl
Rainer Trauth
Frederik Werner
A. Wischnewski
23
60
0
31 May 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a
  Pedestrian Automatic Emergency Brake System
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
22
23
0
16 Apr 2022
SilGAN: Generating driving maneuvers for scenario-based
  software-in-the-loop testing
SilGAN: Generating driving maneuvers for scenario-based software-in-the-loop testing
Dhasarathy Parthasarathy
Anton Johansson
11
10
0
05 Jul 2021
Deep Reinforcement Learning for Autonomous Driving: A Survey
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
146
1,628
0
02 Feb 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
1