ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11407
  4. Cited By
Toward Explainable AI for Regression Models

Toward Explainable AI for Regression Models

21 December 2021
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
    XAI
ArXivPDFHTML

Papers citing "Toward Explainable AI for Regression Models"

24 / 24 papers shown
Title
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
Julius Hense
M. J. Idaji
Oliver Eberle
Thomas Schnake
Jonas Dippel
Laure Ciernik
Oliver Buchstab
Andreas Mock
Frederick Klauschen
Klaus-Robert Müller
49
3
0
08 Jan 2025
Learning Visually Grounded Domain Ontologies via Embodied Conversation
  and Explanation
Learning Visually Grounded Domain Ontologies via Embodied Conversation and Explanation
Jonghyuk Park
A. Lascarides
S. Ramamoorthy
65
0
0
13 Dec 2024
xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell
  Lung Cancer
xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer
Marvin Sextro
Gabriel Dernbach
Kai Standvoss
S. Schallenberg
Frederick Klauschen
Klaus-Robert Müller
Maximilian Alber
Lukas Ruff
23
0
0
12 Nov 2024
Developing Guidelines for Functionally-Grounded Evaluation of
  Explainable Artificial Intelligence using Tabular Data
Developing Guidelines for Functionally-Grounded Evaluation of Explainable Artificial Intelligence using Tabular Data
M. Velmurugan
Chun Ouyang
Yue Xu
Renuka Sindhgatta
B. Wickramanayake
Catarina Moreira
ELM
LMTD
XAI
14
0
0
30 Sep 2024
Enhancing Feature Selection and Interpretability in AI Regression Tasks
  Through Feature Attribution
Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution
Alexander Hinterleitner
T. Bartz-Beielstein
Richard Schulz
Sebastian Spengler
Thomas Winter
Christoph Leitenmeier
29
1
0
25 Sep 2024
A Survey and Comparison of Post-quantum and Quantum Blockchains
A Survey and Comparison of Post-quantum and Quantum Blockchains
Zebo Yang
Haneen Alfauri
Behrooz Farkiani
Raj Jain
Roberto Di Pietro
A. Erbad
23
21
0
02 Sep 2024
Explaining Predictive Uncertainty by Exposing Second-Order Effects
Explaining Predictive Uncertainty by Exposing Second-Order Effects
Florian Bley
Sebastian Lapuschkin
Wojciech Samek
G. Montavon
18
2
0
30 Jan 2024
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI
  Benchmarks
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
AAML
61
20
0
12 Jan 2024
Calibrated Explanations for Regression
Calibrated Explanations for Regression
Tuwe Löfström
Helena Lofstrom
Ulf Johansson
Cecilia Sönströd
Rudy Matela
XAI
FAtt
8
2
0
30 Aug 2023
eXplainable Artificial Intelligence (XAI) in aging clock models
eXplainable Artificial Intelligence (XAI) in aging clock models
Alena I. Kalyakulina
I. Yusipov
Alexey Moskalev
Claudio Franceschi
Mikhail Ivanchenko
19
19
0
21 Jul 2023
When a CBR in Hand is Better than Twins in the Bush
When a CBR in Hand is Better than Twins in the Bush
Mobyen Uddin Ahmed
Shaibal Barua
Shahina Begum
Mir Riyanul Islam
Rosina O. Weber
22
1
0
09 May 2023
Metric Tools for Sensitivity Analysis with Applications to Neural
  Networks
Metric Tools for Sensitivity Analysis with Applications to Neural Networks
Jaime Pizarroso
David Alfaya
José M. Portela
A. Roque
14
4
0
03 May 2023
Explainability in AI Policies: A Critical Review of Communications,
  Reports, Regulations, and Standards in the EU, US, and UK
Explainability in AI Policies: A Critical Review of Communications, Reports, Regulations, and Standards in the EU, US, and UK
L. Nannini
Agathe Balayn
A. Smith
6
37
0
20 Apr 2023
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Lorenz Linhardt
Klaus-Robert Muller
G. Montavon
AAML
13
7
0
12 Apr 2023
On the Soundness of XAI in Prognostics and Health Management (PHM)
On the Soundness of XAI in Prognostics and Health Management (PHM)
D. Martín
Juan Galán Páez
J. Borrego-Díaz
32
12
0
09 Mar 2023
Finding the right XAI method -- A Guide for the Evaluation and Ranking
  of Explainable AI Methods in Climate Science
Finding the right XAI method -- A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science
P. Bommer
M. Kretschmer
Anna Hedström
Dilyara Bareeva
Marina M.-C. Höhne
29
37
0
01 Mar 2023
Neural Fields for Fast and Scalable Interpolation of Geophysical Ocean
  Variables
Neural Fields for Fast and Scalable Interpolation of Geophysical Ocean Variables
J. E. Johnson
Redouane Lguensat
Ronan Fablet
E. Cosme
Julien Le Sommer
16
3
0
18 Nov 2022
XAI for transparent wind turbine power curve models
XAI for transparent wind turbine power curve models
S. Letzgus
13
0
0
21 Oct 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
15
5
0
30 Mar 2022
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time
  Series
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series
Christoffer Loeffler
Wei-Cheng Lai
Bjoern M. Eskofier
Dario Zanca
Lukas M. Schmidt
Christopher Mutschler
FAtt
AI4TS
28
5
0
14 Mar 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
142
244
0
01 May 2021
PredDiff: Explanations and Interactions from Conditional Expectations
PredDiff: Explanations and Interactions from Conditional Expectations
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
FAtt
8
19
0
26 Feb 2021
Local Function Complexity for Active Learning via Mixture of Gaussian
  Processes
Local Function Complexity for Active Learning via Mixture of Gaussian Processes
Danny Panknin
Stefan Chmiela
Klaus-Robert Muller
Shinichi Nakajima
22
0
0
27 Feb 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,233
0
24 Jun 2017
1