Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.13835
Cited By
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
27 December 2021
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies"
19 / 19 papers shown
Title
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
135
0
0
22 Jan 2025
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
40
3
0
09 Jul 2024
Generating Transferable Adversarial Simulation Scenarios for Self-Driving via Neural Rendering
Yasasa Abeysirigoonawardena
Kevin Xie
Chuhan Chen
Salar Hosseini
Ruiting Chen
Ruiqi Wang
Florian Shkurti
29
2
0
27 Sep 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
44
5
0
21 Apr 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
33
18
0
13 Mar 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
33
9
0
02 Feb 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
43
73
0
11 Jan 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
26
60
0
17 Nov 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
44
22
0
22 Sep 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
24
76
0
19 Jul 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
39
149
0
01 Jun 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
104
716
0
13 Jun 2018
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
127
405
0
06 Mar 2017
Variational Optimization
J. Staines
David Barber
DRL
65
53
0
18 Dec 2012
1