ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.03263
  4. Cited By
A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty
  Estimates for AI Models

A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty Estimates for AI Models

10 January 2022
Pascal Gerber
Lisa Jöckel
Michael Kläs
ArXivPDFHTML

Papers citing "A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty Estimates for AI Models"

2 / 2 papers shown
Title
Architectural patterns for handling runtime uncertainty of data-driven
  models in safety-critical perception
Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception
Janek Groß
R. Adler
Michael Kläs
Jan Reich
Lisa Jöckel
Roman Gansch
AI4CE
13
5
0
14 Jun 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
1