ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04833
  4. Cited By
SnapshotNet: Self-supervised Feature Learning for Point Cloud Data
  Segmentation Using Minimal Labeled Data

SnapshotNet: Self-supervised Feature Learning for Point Cloud Data Segmentation Using Minimal Labeled Data

13 January 2022
Xingye Li
Ling Zhang
Zhigang Zhu
    3DPC
ArXivPDFHTML

Papers citing "SnapshotNet: Self-supervised Feature Learning for Point Cloud Data Segmentation Using Minimal Labeled Data"

4 / 4 papers shown
Title
Dual Adaptive Transformations for Weakly Supervised Point Cloud
  Segmentation
Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation
Zhonghua Wu
Yicheng Wu
Guosheng Lin
Jianfei Cai
Chen Qian
3DPC
20
23
0
19 Jul 2022
Enhancing Local Geometry Learning for 3D Point Cloud via Decoupling
  Convolution
Enhancing Local Geometry Learning for 3D Point Cloud via Decoupling Convolution
H. Xiu
Xin Liu
Weimin Wang
Kyoung-Sook Kim
T. Shinohara
Qiong Chang
M. Matsuoka
3DPC
14
0
0
04 Jul 2022
PointContrast: Unsupervised Pre-training for 3D Point Cloud
  Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
139
620
0
21 Jul 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
14,047
0
02 Dec 2016
1