ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05136
  4. Cited By
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders

Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders

13 January 2022
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
ArXivPDFHTML

Papers citing "Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders"

40 / 40 papers shown
Title
SODAs: Sparse Optimization for the Discovery of Differential and Algebraic Equations
Manu Jayadharan
Christina Catlett
Arthur N. Montanari
Niall M. Mangan
AI4CE
40
0
0
08 Mar 2025
Automated Global Analysis of Experimental Dynamics through
  Low-Dimensional Linear Embeddings
Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings
Samuel A. Moore
B. Mann
Boyuan Chen
AI4CE
19
1
0
01 Nov 2024
Learning Macroscopic Dynamics from Partial Microscopic Observations
Learning Macroscopic Dynamics from Partial Microscopic Observations
Mengyi Chen
Qianxiao Li
AI4CE
31
0
0
31 Oct 2024
Measure-Theoretic Time-Delay Embedding
Measure-Theoretic Time-Delay Embedding
Jonah Botvinick-Greenhouse
Maria Oprea
R. Maulik
Yunan Yang
18
2
0
13 Sep 2024
On latent dynamics learning in nonlinear reduced order modeling
On latent dynamics learning in nonlinear reduced order modeling
N. Farenga
S. Fresca
Simone Brivio
Andrea Manzoni
AI4CE
34
1
0
27 Aug 2024
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
19
2
0
15 Aug 2024
VENI, VINDy, VICI: a variational reduced-order modeling framework with
  uncertainty quantification
VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification
Paolo Conti
Jonas Kneifl
Andrea Manzoni
A. Frangi
Jörg Fehr
Steven L. Brunton
J. Nathan Kutz
43
6
0
31 May 2024
Recurrent Deep Kernel Learning of Dynamical Systems
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
13
1
0
30 May 2024
Shallow Recurrent Decoder for Reduced Order Modeling of Plasma Dynamics
Shallow Recurrent Decoder for Reduced Order Modeling of Plasma Dynamics
J. Nathan Kutz
M. Reza
Farbod Faraji
A. Knoll
AI4CE
21
9
0
20 May 2024
Learning Governing Equations of Unobserved States in Dynamical Systems
Learning Governing Equations of Unobserved States in Dynamical Systems
Gevik Grigorian
Sandip V. George
S. Arridge
OOD
19
0
0
29 Apr 2024
SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning
SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning
Nicholas Zolman
Urban Fasel
J. Nathan Kutz
Steven L. Brunton
AI4CE
30
11
0
14 Mar 2024
SINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study
SINDy vs Hard Nonlinearities and Hidden Dynamics: a Benchmarking Study
Aurelio Raffa Ugolini
Valentina Breschi
Andrea Manzoni
M. Tanelli
22
2
0
01 Mar 2024
Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
  and Levels-of-Experts
Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning and Levels-of-Experts
Kun Wang
Hao Wu
Guibin Zhang
Junfeng Fang
Yuxuan Liang
Yuankai Wu
Roger Zimmermann
Yang Wang
19
8
0
06 Feb 2024
Sparse identification of nonlinear dynamics in the presence of library
  and system uncertainty
Sparse identification of nonlinear dynamics in the presence of library and system uncertainty
Andrew O'Brien
13
0
0
23 Jan 2024
Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
Mohamad Abed El Rahman Hammoud
Naila Raboudi
E. Titi
Omar Knio
Ibrahim Hoteit
AI4CE
25
2
0
01 Jan 2024
AI-Lorenz: A physics-data-driven framework for black-box and gray-box
  identification of chaotic systems with symbolic regression
AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression
Mario De Florio
Ioannis G. Kevrekidis
George Karniadakis
41
15
0
21 Dec 2023
Inferring Inference
Inferring Inference
Rajkumar Vasudeva Raju
Zhe Li
Scott W. Linderman
Xaq Pitkow
15
1
0
04 Oct 2023
Multi-fidelity reduced-order surrogate modeling
Multi-fidelity reduced-order surrogate modeling
Paolo Conti
Mengwu Guo
Andrea Manzoni
A. Frangi
Steven L. Brunton
N. Kutz
AI4CE
16
23
0
01 Sep 2023
Predicting Ordinary Differential Equations with Transformers
Predicting Ordinary Differential Equations with Transformers
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
22
14
0
24 Jul 2023
Autoencoding for the 'Good Dictionary' of eigen pairs of the Koopman
  Operator
Autoencoding for the 'Good Dictionary' of eigen pairs of the Koopman Operator
Neranjaka Jayarathne
Erik Bollt
8
0
0
08 Jun 2023
Generalized Teacher Forcing for Learning Chaotic Dynamics
Generalized Teacher Forcing for Learning Chaotic Dynamics
Florian Hess
Zahra Monfared
Manuela Brenner
Daniel Durstewitz
AI4CE
14
30
0
07 Jun 2023
Simultaneous identification of models and parameters of scientific
  simulators
Simultaneous identification of models and parameters of scientific simulators
Cornelius Schroder
Jakob H. Macke
27
4
0
24 May 2023
On the effectiveness of neural priors in modeling dynamical systems
On the effectiveness of neural priors in modeling dynamical systems
Sameera Ramasinghe
Hemanth Saratchandran
Violetta Shevchenko
Simon Lucey
24
2
0
10 Mar 2023
Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
  Musculoskeletal System Based on Non-intrusive Model Order Reduction
Low-dimensional Data-based Surrogate Model of a Continuum-mechanical Musculoskeletal System Based on Non-intrusive Model Order Reduction
Jonas Kneifl
D. Rosin
Oliver Röhrle
Jörg Fehr
AI4CE
19
13
0
13 Feb 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
32
20
0
04 Feb 2023
Recurrences reveal shared causal drivers of complex time series
Recurrences reveal shared causal drivers of complex time series
W. Gilpin
CML
AI4TS
27
6
0
31 Jan 2023
Convergence of uncertainty estimates in Ensemble and Bayesian sparse
  model discovery
Convergence of uncertainty estimates in Ensemble and Bayesian sparse model discovery
Liyao (Mars) Gao
Urban Fasel
Steven L. Brunton
J. Nathan Kutz
9
12
0
30 Jan 2023
Expressive architectures enhance interpretability of dynamics-based
  neural population models
Expressive architectures enhance interpretability of dynamics-based neural population models
Andrew R. Sedler
Chris VerSteeg
C. Pandarinath
27
10
0
07 Dec 2022
Bayesian autoencoders for data-driven discovery of coordinates,
  governing equations and fundamental constants
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
16
20
0
19 Nov 2022
Reduced order modeling of parametrized systems through autoencoders and
  SINDy approach: continuation of periodic solutions
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
Paolo Conti
G. Gobat
S. Fresca
Andrea Manzoni
A. Frangi
AI4CE
15
49
0
13 Nov 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDL
AI4CE
UQCV
11
0
0
13 Sep 2022
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
35
29
0
06 Jul 2022
Data-driven synchronization-avoiding algorithms in the explicit
  distributed structural analysis of soft tissue
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
G. Tong
Daniele E. Schiavazzi
16
3
0
05 Jul 2022
Recognition Models to Learn Dynamics from Partial Observations with
  Neural ODEs
Recognition Models to Learn Dynamics from Partial Observations with Neural ODEs
Mona Buisson-Fenet
V. Morgenthaler
Sebastian Trimpe
F. D. Meglio
30
6
0
25 May 2022
Deep Learning of Chaotic Systems from Partially-Observed Data
Deep Learning of Chaotic Systems from Partially-Observed Data
V. Churchill
D. Xiu
32
12
0
12 May 2022
Discrepancy Modeling Framework: Learning missing physics, modeling
  systematic residuals, and disambiguating between deterministic and random
  effects
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
Megan R. Ebers
K. Steele
J. Nathan Kutz
23
15
0
10 Mar 2022
Bounded nonlinear forecasts of partially observed geophysical systems
  with physics-constrained deep learning
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
11
10
0
11 Feb 2022
Dimensionally Consistent Learning with Buckingham Pi
Dimensionally Consistent Learning with Buckingham Pi
Joseph Bakarji
Jared L. Callaham
Steven L. Brunton
N. Kutz
28
38
0
09 Feb 2022
Learning Dissipative Dynamics in Chaotic Systems
Learning Dissipative Dynamics in Chaotic Systems
Zong-Yi Li
Miguel Liu-Schiaffini
Nikola B. Kovachki
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
23
25
0
13 Jun 2021
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1