Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.05151
Cited By
Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning
13 January 2022
Peyman Bateni
Jarred Barber
Raghav Goyal
Vaden Masrani
Jan Willem van de Meent
Leonid Sigal
Frank D. Wood
BDL
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning"
8 / 8 papers shown
Title
Robust Meta-Representation Learning via Global Label Inference and Classification
Ruohan Wang
Isak Falk
Massimiliano Pontil
C. Ciliberto
16
3
0
22 Dec 2022
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot Learning
Yang Shu
Zhangjie Cao
Jing Gao
Jianmin Wang
Philip S. Yu
Mingsheng Long
19
10
0
14 Oct 2021
Imagining The Road Ahead: Multi-Agent Trajectory Prediction via Differentiable Simulation
Adam Scibior
Vasileios Lioutas
Daniele Reda
Peyman Bateni
Frank D. Wood
VGen
40
47
0
22 Apr 2021
Free Lunch for Few-shot Learning: Distribution Calibration
Shuo Yang
Lu Liu
Min Xu
OODD
208
322
0
16 Jan 2021
CrossTransformers: spatially-aware few-shot transfer
Carl Doersch
Ankush Gupta
Andrew Zisserman
ViT
201
328
0
22 Jul 2020
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Yinbo Chen
Zhuang Liu
Huijuan Xu
Trevor Darrell
Xiaolong Wang
158
339
0
09 Mar 2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
54
89
0
06 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1