Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.11066
Cited By
Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization
26 January 2022
Grigory Malinovsky
Konstantin Mishchenko
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization"
21 / 21 papers shown
Title
Task Arithmetic Through The Lens Of One-Shot Federated Learning
Zhixu Tao
I. Mason
Sanjeev R. Kulkarni
Xavier Boix
MoMe
FedML
84
3
0
27 Nov 2024
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurelien Lucchi
35
4
0
16 Oct 2024
FedECADO: A Dynamical System Model of Federated Learning
Aayushya Agarwal
Gauri Joshi
L. Pileggi
FedML
23
0
0
13 Oct 2024
Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation
Grigory Malinovsky
Umberto Michieli
Hasan Hammoud
Taha Ceritli
Hayder Elesedy
Mete Ozay
Peter Richtárik
AI4CE
32
2
0
10 Oct 2024
Towards Hyper-parameter-free Federated Learning
Geetika
Drishya Uniyal
Bapi Chatterjee
FedML
52
0
0
30 Aug 2024
Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning
Kai Yi
Timur Kharisov
Igor Sokolov
Peter Richtárik
FedML
32
2
0
03 Jun 2024
Towards Fairness in Provably Communication-Efficient Federated Recommender Systems
Kirandeep Kaur
Sujit Gujar
Shweta Jain
FedML
48
0
0
03 May 2024
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms
Rustem Islamov
M. Safaryan
Dan Alistarh
FedML
26
12
0
31 Oct 2023
Improving Federated Aggregation with Deep Unfolding Networks
S. Nanayakkara
Shiva Raj Pokhrel
Gang Li
FedML
31
0
0
30 Jun 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
28
6
0
28 Jun 2023
Improving Accelerated Federated Learning with Compression and Importance Sampling
Michal Grudzieñ
Grigory Malinovsky
Peter Richtárik
FedML
35
8
0
05 Jun 2023
On Convergence of Incremental Gradient for Non-Convex Smooth Functions
Anastasia Koloskova
N. Doikov
Sebastian U. Stich
Martin Jaggi
36
2
0
30 May 2023
Federated Learning with Regularized Client Participation
Grigory Malinovsky
Samuel Horváth
Konstantin Burlachenko
Peter Richtárik
FedML
31
13
0
07 Feb 2023
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
Wentao Guo
Khiem Pham
Tiancheng Yuan
Charlie F. Ruan
Yucheng Lu
Chris De Sa
38
6
0
02 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
40
6
0
30 Jan 2023
FedExP: Speeding Up Federated Averaging via Extrapolation
Divyansh Jhunjhunwala
Shiqiang Wang
Gauri Joshi
FedML
19
52
0
23 Jan 2023
Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness
R. Seccia
Corrado Coppola
G. Liuzzi
L. Palagi
26
2
0
04 Dec 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
27
20
0
08 Jul 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
16
21
0
14 Jun 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
25
21
0
27 Apr 2022
Bolstering Stochastic Gradient Descent with Model Building
Ş. Birbil
Özgür Martin
Gönenç Onay
Figen Oztoprak
ODL
14
1
0
13 Nov 2021
1