ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.12023
  4. Cited By
Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed
  Deep Learning

Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning

28 January 2022
Lianmin Zheng
Zhuohan Li
Hao Zhang
Yonghao Zhuang
Zhifeng Chen
Yanping Huang
Yida Wang
Yuanzhong Xu
Danyang Zhuo
Eric P. Xing
Joseph E. Gonzalez
Ion Stoica
    MoE
ArXivPDFHTML

Papers citing "Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning"

17 / 17 papers shown
Title
Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
Siddharth Singh
Prajwal Singhania
Aditya K. Ranjan
John Kirchenbauer
Jonas Geiping
...
Abhimanyu Hans
Manli Shu
Aditya Tomar
Tom Goldstein
A. Bhatele
94
2
0
12 Feb 2025
iServe: An Intent-based Serving System for LLMs
iServe: An Intent-based Serving System for LLMs
Dimitrios Liakopoulos
Tianrui Hu
Prasoon Sinha
N. Yadwadkar
VLM
116
0
0
08 Jan 2025
FastDecode: High-Throughput GPU-Efficient LLM Serving using
  Heterogeneous Pipelines
FastDecode: High-Throughput GPU-Efficient LLM Serving using Heterogeneous Pipelines
Jiaao He
Jidong Zhai
32
27
0
18 Mar 2024
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language
  Models with 3D Parallelism
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism
Yanxi Chen
Xuchen Pan
Yaliang Li
Bolin Ding
Jingren Zhou
LRM
28
31
0
08 Dec 2023
Moirai: Towards Optimal Placement for Distributed Inference on
  Heterogeneous Devices
Moirai: Towards Optimal Placement for Distributed Inference on Heterogeneous Devices
Beibei Zhang
Hongwei Zhu
Feng Gao
Zhihui Yang
Xiaoyang Sean Wang
14
1
0
07 Dec 2023
UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming
UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming
Hao Lin
Ke Wu
Jie Li
Jun Yu Li
Wu-Jun Li
26
1
0
31 Jul 2023
Scheduling Multi-Server Jobs with Sublinear Regrets via Online Learning
Scheduling Multi-Server Jobs with Sublinear Regrets via Online Learning
Hailiang Zhao
Shuiguang Deng
Zhengzhe Xiang
Xueqiang Yan
Jianwei Yin
Schahram Dustdar
Albert Y. Zomaya
20
1
0
11 May 2023
Angel-PTM: A Scalable and Economical Large-scale Pre-training System in
  Tencent
Angel-PTM: A Scalable and Economical Large-scale Pre-training System in Tencent
Xiaonan Nie
Yi Liu
Fangcheng Fu
J. Xue
Dian Jiao
Xupeng Miao
Yangyu Tao
Bin Cui
MoE
19
16
0
06 Mar 2023
SWARM Parallelism: Training Large Models Can Be Surprisingly
  Communication-Efficient
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Max Ryabinin
Tim Dettmers
Michael Diskin
Alexander Borzunov
MoE
22
31
0
27 Jan 2023
Does compressing activations help model parallel training?
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
19
4
0
06 Jan 2023
Efficiently Scaling Transformer Inference
Efficiently Scaling Transformer Inference
Reiner Pope
Sholto Douglas
Aakanksha Chowdhery
Jacob Devlin
James Bradbury
Anselm Levskaya
Jonathan Heek
Kefan Xiao
Shivani Agrawal
J. Dean
21
292
0
09 Nov 2022
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
Huanzhou Zhu
Bo Zhao
Gang Chen
Weifeng Chen
Yijie Chen
Liang Shi
Yaodong Yang
Peter R. Pietzuch
Lei Chen
OffRL
MoE
11
6
0
03 Oct 2022
Efficient Quantized Sparse Matrix Operations on Tensor Cores
Efficient Quantized Sparse Matrix Operations on Tensor Cores
Shigang Li
Kazuki Osawa
Torsten Hoefler
72
31
0
14 Sep 2022
Varuna: Scalable, Low-cost Training of Massive Deep Learning Models
Varuna: Scalable, Low-cost Training of Massive Deep Learning Models
Sanjith Athlur
Nitika Saran
Muthian Sivathanu
R. Ramjee
Nipun Kwatra
GNN
31
80
0
07 Nov 2021
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
  Training
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
Yongbin Li
Hongxin Liu
Zhengda Bian
Boxiang Wang
Haichen Huang
Fan Cui
Chuan-Qing Wang
Yang You
GNN
9
143
0
28 Oct 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
160
413
0
18 Jan 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,817
0
17 Sep 2019
1