ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.12662
  4. Cited By
Fair ranking: a critical review, challenges, and future directions

Fair ranking: a critical review, challenges, and future directions

29 January 2022
Gourab K. Patro
Lorenzo Porcaro
Laura Mitchell
Qiuyue Zhang
Meike Zehlike
Nikhil Garg
ArXivPDFHTML

Papers citing "Fair ranking: a critical review, challenges, and future directions"

9 / 9 papers shown
Title
Social Choice for Heterogeneous Fairness in Recommendation
Social Choice for Heterogeneous Fairness in Recommendation
Amanda A. Aird
Elena Stefancova
Cassidy All
A. Voida
Martin Homola
Nicholas Mattei
Robin Burke
FaML
50
0
0
06 Oct 2024
The Role of Relevance in Fair Ranking
The Role of Relevance in Fair Ranking
Aparna Balagopalan
Abigail Z. Jacobs
Asia J. Biega
25
8
0
09 May 2023
Fairness in Matching under Uncertainty
Fairness in Matching under Uncertainty
Siddartha Devic
David Kempe
Vatsal Sharan
Aleksandra Korolova
FaML
24
6
0
08 Feb 2023
Fair Ranking with Noisy Protected Attributes
Fair Ranking with Noisy Protected Attributes
Anay Mehrotra
Nisheeth K. Vishnoi
23
16
0
30 Nov 2022
Fair Ranking as Fair Division: Impact-Based Individual Fairness in
  Ranking
Fair Ranking as Fair Division: Impact-Based Individual Fairness in Ranking
Yuta Saito
Thorsten Joachims
11
24
0
15 Jun 2022
Imitate TheWorld: A Search Engine Simulation Platform
Imitate TheWorld: A Search Engine Simulation Platform
Yongqing Gao
Guangda Huzhang
Weijie Shen
Yawen Liu
Wen-Ji Zhou
Qing Da
Yang Yu
16
3
0
16 Jul 2021
Measuring Recommender System Effects with Simulated Users
Measuring Recommender System Effects with Simulated Users
Sirui Yao
Yoni Halpern
Nithum Thain
Xuezhi Wang
Kang Lee
Flavien Prost
Ed H. Chi
Jilin Chen
Alex Beutel
43
49
0
12 Jan 2021
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
305
4,203
0
23 Aug 2019
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
166
312
0
30 Oct 2017
1