ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.12987
  4. Cited By
Interpretable and Generalizable Graph Learning via Stochastic Attention
  Mechanism

Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism

31 January 2022
Siqi Miao
Miaoyuan Liu
Pan Li
ArXivPDFHTML

Papers citing "Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism"

32 / 32 papers shown
Title
Soft causal learning for generalized molecule property prediction: An environment perspective
Soft causal learning for generalized molecule property prediction: An environment perspective
Limin Li
Kuo Yang
Wenjie Du
Pengkun Wang
Zhengyang Zhou
Yang Wang
OOD
AI4CE
48
0
0
07 May 2025
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Yang Ji
Ying Sun
Hengshu Zhu
46
0
0
17 Mar 2025
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Xuexin Chen
Ruichu Cai
Zhengting Huang
Zijian Li
Jie Zheng
Min Wu
41
0
0
08 Mar 2025
NodeNAS: Node-Specific Graph Neural Architecture Search for Out-of-Distribution Generalization
Qiyi Wang
Yinning Shao
Yunlong Ma
Min Liu
OOD
71
0
0
04 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
58
0
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng R. Li
Jundong Li
Kaize Ding
OOD
45
2
0
25 Oct 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
37
2
0
03 Aug 2024
Unifying Invariant and Variant Features for Graph Out-of-Distribution
  via Probability of Necessity and Sufficiency
Unifying Invariant and Variant Features for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
44
0
0
21 Jul 2024
Contextualized Messages Boost Graph Representations
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
62
1
0
19 Mar 2024
Generating In-Distribution Proxy Graphs for Explaining Graph Neural
  Networks
Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks
Zhuomin Chen
Jiaxing Zhang
Jingchao Ni
Xiaoting Li
Yuchen Bian
Md. Mezbahul Islam
A. Mondal
Hua Wei
Dongsheng Luo
16
1
0
03 Feb 2024
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution
  Generalization
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization
Tianrui Jia
Haoyang Li
Cheng Yang
Tao Tao
Chuan Shi
OOD
20
17
0
18 Dec 2023
GRAM: An Interpretable Approach for Graph Anomaly Detection using
  Gradient Attention Maps
GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps
Yifei Yang
Peng Wang
Xiaofan He
Dongmian Zou
14
5
0
10 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
18
9
0
08 Nov 2023
Does Invariant Graph Learning via Environment Augmentation Learn
  Invariance?
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
26
33
0
29 Oct 2023
Individual and Structural Graph Information Bottlenecks for
  Out-of-Distribution Generalization
Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization
Ling Yang
Jiayi Zheng
Heyuan Wang
Zhongyi Liu
Zhilin Huang
Shenda Hong
Wentao Zhang
Bin Cui
22
13
0
28 Jun 2023
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
30
6
0
25 May 2023
Unstructured and structured data: Can we have the best of both worlds
  with large language models?
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Combining Stochastic Explainers and Subgraph Neural Networks can
  Increase Expressivity and Interpretability
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
25
0
0
14 Apr 2023
Quantum Graph Learning: Frontiers and Outlook
Quantum Graph Learning: Frontiers and Outlook
Shuo Yu
Ciyuan Peng
Yingbo Wang
Ahsan Shehzad
Feng Xia
Edwin R. Hancock
AI4CE
16
5
0
02 Feb 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for
  Interpretable Brain Network-Based Psychiatric Diagnosis
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
21
31
0
04 Jan 2023
Towards Prototype-Based Self-Explainable Graph Neural Network
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
25
12
0
05 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Graph Data Augmentation for Graph Machine Learning: A Survey
Graph Data Augmentation for Graph Machine Learning: A Survey
Tong Zhao
Wei Jin
Yozen Liu
Yingheng Wang
Gang Liu
Stephan Günnemann
Neil Shah
Meng-Long Jiang
OOD
25
79
0
17 Feb 2022
Task-Agnostic Graph Explanations
Task-Agnostic Graph Explanations
Yaochen Xie
S. Katariya
Xianfeng Tang
E-Wen Huang
Nikhil S. Rao
Karthik Subbian
Shuiwang Ji
30
25
0
16 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
222
0
30 Jan 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
162
590
0
31 Dec 2020
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
88
224
0
24 Oct 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
201
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
900
0
02 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
1